Skip to main content
Log in

Cardiac design in lower vertebrates: what can phylogeny reveal about ontogeny?

  • Published:
Experientia Aims and scope Submit manuscript

Summary

In very few instances can the cardiovascular systems of adult ‘lower’ vertebrates serve asdirect models for development in ‘higher’ vertebrates, primarily because numerous evolutionary specializations for preferential distribution of cardiac output between systemic tissues and gas exchange, organs occur in the highly derived circulation of most extant lower vertebrates. Yet, the extensive literature on the cardiovascular anatomy and physiology of aquatic and air breathing fishes, amphibians and reptiles offers important conceptual insights into both patterns and mechanisms of development in birds and mammals. The primary contribution of such studies to the student of developing bird and mammal circulations is the clear demonstration that surprisingly complex hemodynamic function can develop from supposedly ‘simple’ cardiovascular systems typified by incompletely divided heart chambers. Thus, the hemodynamics of embryonic bird and mammal circulations should be determined by measurement, rather than inferred from structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bugge, J., The heart of the African lung fish,Protopterus. Vidensk. Meddr. dansk naturh. Foren.123 (1961) 193–210.

    Google Scholar 

  2. Bemis, W., Burggren, W., and Kempt, N., Eds, The Biology and Evolution of Lungfishes. Alan R. Liss, Chicago 1986.

    Google Scholar 

  3. Burggren, W. W., Pulmonary plasma filtration in the turtle: A wet vertebrate lung? Science215 (1982) 77–78.

    Article  CAS  PubMed  Google Scholar 

  4. Burggren, W. W., Hemodynamics and regulation of cardiovascular shunts in reptiles, in: Cardiovascular Shunts: Phylogenetic, Ontogenetic and Clinical Aspects, pp. 121–142, Eds K. Johansen and W. Burggren Munksgaard, Copenhagen 1985.

    Google Scholar 

  5. Burggren, W. W., Form and function in reptilian circulations. Am. Zool.27 (1987) 5–19.

    Article  Google Scholar 

  6. Burggren, W. W., The structure and function of amphibian lungs, in: Comparative Pulmonary Physiology: Current Concepts. Eds S. Wood and C. Lenfant. Dekker, New York (1988) in press.

    Google Scholar 

  7. Burggren, W. W., and Johansen, K., Ventricular hemodynamics in the monitor lizard,Varanus exanthematicus: Pulmonary and systemic pressure separation. J. exp. Biol.96 (1982) 343–354.

    Article  Google Scholar 

  8. Burggren, W., and Johansen, K., Circulation and respiration in lungfishes. J. Morphol., Suppl.1 (1986) 217–236.

    Article  Google Scholar 

  9. Burggren, W. W., and Shelton, G., Gas exchange and transport during intermittent breathing in chelonian reptiles. J. exp. Biol.82 (1979) 75–92.

    Article  Google Scholar 

  10. Burggren, W. W., Johansen, K., and McMahon, B. R., Respiration in primitive fishes, in: the Biology of Primitive Fishes. Eds R. E. Foreman, A. Gorbman, J. M. Dodd and R. Olsson. Plenum, New York 1985.

    Google Scholar 

  11. Clark, A. J., Comparative Physiology of the Heart. Cambridge University Press, 1927.

  12. Feder, M. E., and Burggren, W. W., Cutaneous gas exchange in vertebrates: Design, patterns, control and implication. Biol. Rev.60 (1985) 1–45.

    Article  CAS  PubMed  Google Scholar 

  13. Fishman, A. P., DeLaney, R. G., Laurent, P., and Szidon, J. P., in: Cardiovascular Shunts: Phylogenetic, Ontogenetic and Clinical Aspects, pp. 88–99. Eds K. Johansen and W. Burggren. Munksgaard, Copenhagen 1985.

    Google Scholar 

  14. Goodrich E. S., Studies on the Structure and Development of Vertebrates. MacMillan, London 1930.

    Book  Google Scholar 

  15. Heisler, N., Neumann, P., and Maloiy, G. M. O., The mechanism of intracardiac shunting in the lizardVaranus exanthematicus. J. exp. Biol.105 (1983) 15–32.

    Article  CAS  PubMed  Google Scholar 

  16. Holmes, E. B., A reconsideration of the phylogeny of the tetrapod heart. J. Morphol.147 (1976) 209–228.

    Article  Google Scholar 

  17. Ishimatsu, A., and Itazawa, Y., Difference in blood oxygen levels in the outflow vessels of the heart of an air-breathing fish,Channa argus: Do separate blood streams exist in a teleostean heart? J. comp. Physiol.149 (1983) 435–440.

    Article  Google Scholar 

  18. Johansen, K., Cardiovascular dynamics in fishes, amphibians, and reptiles. Ann. N. Y. Acad. Sci.127 (1965) 414–442.

    Article  CAS  PubMed  Google Scholar 

  19. Johansen, K., Air breathing in fishes, in: Fish Physiology, vol. 4, pp. 361–411. Eds W. S. Hoer and D. J. Randall Academic Press, New York 1970.

    Google Scholar 

  20. Johansen, K., Cardiac support of metabolic function in vertebrates, in: Evolution of Respiratory Process, pp. 107–192. Eds S. C. Wood and C. Lenfant. Dekker, New York 1979.

    Google Scholar 

  21. Johansen, K., Cardiac output and pulsatile aortic flow in the teleost,Gadus morhua. Comp. Biochem. Physiol.7 (1962) 169–174.

    Article  CAS  PubMed  Google Scholar 

  22. Johansen, K., and Burggren, W. W., Cardiovascular function in lower vertebrates, in: Hearts and Heart-like Organs, pp. 61–117. Ed. G. Bourne, Academic Press, New York 1980.

    Google Scholar 

  23. Johansen, K., and Burggren, W. W., Venous return and cardiac filling in varanid lizards. J. exp. Biol.113 (1985) 389–400.

    Article  Google Scholar 

  24. Johansen, K., Franklin, D. L., and Van Citters, R. L., Aortic blood flow in free-swimming elasmobranchs. Comp. Biochem. Physiol.19 (1966) 151–160.

    Article  CAS  PubMed  Google Scholar 

  25. Johansen, K., Lenfant, C., and Hanson, D., Cardiovascular dynamics in the lungfishes. Z. vergl. physiol.59 (1968) 157–186.

    Article  Google Scholar 

  26. Malvin, G. M., Cardiovascular shunting during amphibian metamorphosis, in: Cardiovascular Shunts: Phylogenetic, Ontogenetic and Clinical Aspects, pp. 163–172. Eds K. Johansen and W. Burggren. Munksgaard, Copenhagen 1985.

    Google Scholar 

  27. Muller, J., Abh. dt. Akad. Wiss., Berlin, Kl. Chem., Geol. Biol. (1939) 175–303.

  28. Randall, D. J., Functional morphology of the heart in fishes. Am. Zool.8 (1968) 179–189.

    Article  CAS  PubMed  Google Scholar 

  29. Randall, D. J., The circulatory system, in: Fish Physiology, vol. 4, pp. 133–172. Eds W. S. Hoar and D. J. Randall. Academic Press, New York 1970.

    Google Scholar 

  30. Randall, D. J., Burggren, W. W., Haswell, M. S., and Farrell, A. P., The Evolution of Air Breathing in Vertebrates. Cambridge University Press, 1981.

  31. Satchell, G. H., Circulation in Fishes. Cambridge University Press, 1971.

  32. Satchell, G. H., and Jones, M. P., The function of the conus arteriosus in the Port Jackson shark,Heterodontus portusjacksoni. J. exp. Biol.46 (1967) 373–382.

    Article  CAS  PubMed  Google Scholar 

  33. Shelton, G., Gas exchange, pulmonary blood supply, and the partially divided amphibian heart, in: Perspectives in Experimental Biology, pp. 247–259. Ed. P. Spencer Davies. Pergamon Press, Oxford 1976.

    Google Scholar 

  34. Shelton, G., Functional and evolutionary significance of cardiovascular shunts in the Amphibia, in: Cardiovascular Shunts: Phylogenetic, Ontogenetic and Clinical Aspects, pp. 100–116. Eds K. Johansen and W. Burggren. Munksgaard, Copenhagen 1985.

    Google Scholar 

  35. Shelton, G. and Boutilier, R. G., Apnoea in amphibians and reptiles. J. exp. Biol.100 (1982) 245–273.

    Article  Google Scholar 

  36. Shelton, G., and Burggren, W., Cardiovascular dynamics of the Chelonia during apnoea and lung ventilation. J. exp. Biol.64 (1976) 323–343.

    Article  CAS  PubMed  Google Scholar 

  37. Stohr, P., Über den Klappenapparat imconus arteriosus der Selachier und Ganoiden. Morphol. Jb.2 (1876) 197–228.

    Google Scholar 

  38. Sudak, F. N., Intrapericardial and intracardiac pressures and the events of the cardiac cycle inMustelus canis (Mitchell). Comp. Biochem. Physiol.14 (1965) 689–705.

    Article  CAS  PubMed  Google Scholar 

  39. Tazawa, H., Mochizuki, M., and Piiper, J., Respiratory gas transport by the incompletely separated double circulation in the bullfrog,Rana catesbeiana. Respir. Physiol.36 (1979) 77–95.

    Article  CAS  PubMed  Google Scholar 

  40. Toews, D. P., Shelton, G., and Randall, D. J., Gas tensions in the lungs and major blood vessels of the urodele, amphibian,Amphiuma tridactylum. J. exp. Biol.55 (1971) 47–61.

    Article  Google Scholar 

  41. Webb, G., Heatwole, H., and DeBavay, J. Comparative cardiac anatomy of the reptilia: I. The chambers and septa of the varanid ventricle. J. Morphol.134 (1971) 335–350.

    Article  CAS  PubMed  Google Scholar 

  42. White,F. N., Functional anatomy of the heart of reptiles. Am. Zool.8 (1968) 211–19.

    Article  CAS  PubMed  Google Scholar 

  43. White, F. N., Redistribution of cardiac output in the diving alligator. Copeia3 (1969) 567–570.

    Article  Google Scholar 

  44. White, F. N., Circulation, in: Biology of the Reptilia, vol. 5. Ed. C. Gans. Academic Press, New York 1976.

    Google Scholar 

  45. White, F. N., Role of intracardiac shunts in pulmonary gas exchange in chelonian reptiles, in: Cardiovascular Shunts: Phylogenetic, Ontogenetic and Clinical Aspects, pp. 296–305. Eds K. Johansen and W. Burggren. Munksgaard, Copenhagen 1985.

    Google Scholar 

  46. Wood, S. C., Cardiovascular shunts and oxygen transport in lower vertebrates. Am. J. Physiol.247 (1984) R3-R14.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burggren, W.W. Cardiac design in lower vertebrates: what can phylogeny reveal about ontogeny?. Experientia 44, 919–930 (1988). https://doi.org/10.1007/BF01939885

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01939885

Key words

Navigation