Skip to main content
Log in

The matches, achieved by natural selection, between biological capacities and their natural loads

  • Multi-author Review
  • Ecological Implications of Metabolic Biochemistry
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Natural selection tends to eliminate unutilized capacities because of their costs. Hence we ask how large are the reserve capacities by which biological capacities exceed natural loads, and how closely are related biological capacities matched to each other. Measured capacities (Vmax values) of small intestinal brush-border nutrient transporters are typically around twice their natural loads (dietary intakes of their substrates); the ratio is higher for a transporter of a hyperessential nutrient. Preliminary evidence suggests matching of capacities between different steps in carbohydrate metabolism, and between the intestine, liver, kidneys, and spleen. Symmorphosis — the postulated matching of capacities to each other and to loads — is a testable hypothesis of economic design, useful in detecting and explaining cases of apparently uneconomic design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, R. M., Factors of safety in the structure of animals. Sci. Prog., Oxf.67 (1981) 109–130.

    CAS  Google Scholar 

  2. Buddington, R. K., and Diamond, J. M., Ontogenetic development of intestinal nutrient transporters. A. Rev. Physiol.51 (1989) 601–619.

    Article  CAS  Google Scholar 

  3. Buddington, R. K., and Diamond, J. M., Ontogenetic development of nutrient transporters in rabbit intestine. Am. J. Physiol.259 (1990) G544-G555.

    CAS  PubMed  Google Scholar 

  4. Buddington, R. K., and Diamond, J. M., Ontogenetic development of nutrient transporters in cat intestine. Am. J. Physiol. (1992) in press.

  5. Diamond, J. M., Evolutionary design of intestinal nutrient absorption: enough but not too much. News in Physiol. Sci.6 (1991) 92–96.

    Google Scholar 

  6. Diamond, J. M., and Karasov, W. H., Effect of dietary carbohydrate on monosaccharide uptake by mouse small intestine in vivo. J. Physiol.349 (1984) 419–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Di Magno, E. P., Go, V. L. W., and Summerskill, W. H. J., Relations between pancreatic enzyme outputs and malabsorption in severe pancreatic insufficiency. N. Engl. J. Med.288 (1973) 813–815.

    Article  Google Scholar 

  8. Dudley, R., and Gans, C., A critique of symmorphosis and optimality models in physiology. Physiol. Zool.64 (1991) 627–637.

    Article  Google Scholar 

  9. Dykhuizen, D., Selection for tryptophan auxotrophs ofEscherichia coli in glucose-limited chemostats as a test of the energy conservation hypothesis of evolution. Evolution32 (1978) 125–150.

    CAS  PubMed  Google Scholar 

  10. Ferraris, R. P., and Diamond, J. M., Substrate-dependent regulation of intestinal nutrient transporters. A. Rev. Physiol.51 (1989) 125–141.

    Article  CAS  Google Scholar 

  11. Garland, T., and Huey, R. B., Testing symmorphosis: does structure match functional requirements? Evolution41 (1987) 1404–1409.

    Article  PubMed  Google Scholar 

  12. Hammond, K. A., and Diamond, J., An experimental test for a ceiling on sustained metabolic rate in lactating mice. Physiol. Zool. (1992) in press.

  13. Kacser, H., and Burns, J. A., The molecular basis of dominance. Genetics97 (1981) 639–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karasov, W. H., and Diamond, J. M., A simple method for measuring solute uptake by intestine in vitro. J. comp. Physiol.152 (1983) 105–116.

    Article  CAS  Google Scholar 

  15. MacDonald, M. L., Rogers, Q. R., and Morris, J. G., Nutrition of the domestic cat, a mammalian carnivore. A. Rev. Nutr.4 (1984) 521–562.

    Article  CAS  Google Scholar 

  16. Obst, B. S., and Diamond, J. M., The ontogenesis of intestinal nutrient transport in the domestic chicken (Gallus gallus) and its relation to growth. Auk (1992) in press.

  17. Rubin, C. T., and Lanyon, L. E., Dynamic strain similarity in vertebrates: an alternative to allometric limb bone scaling. J. theor. Biol.107 (1984) 321–327.

    Article  CAS  PubMed  Google Scholar 

  18. Taylor, C. R., and Weibel, E. R., Design of the mammalian respiratory system. I. Problem and strategy. Respir. Physiol.44 (1981) 1–10.

    Article  CAS  PubMed  Google Scholar 

  19. Toloza, E. M., and Diamond, J. M., Ontogenetic development of nutrient transporters in bullfrog intestine. Am. J. Physiol.258 (1990) G760-G769.

    CAS  PubMed  Google Scholar 

  20. Toloza, E. M., and Diamond, J., Ontogenetic development of nutrient transporters in rat intestine. Am. J. Physiol. (1992) in press.

  21. Toloza, E. M., Lam, M., and Diamond, J., Nutrient extraction by cold-exposed mice: A test of digestive safety margins. Am. J. Physiol.261 (1991) G608-G620.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diamond, J., Hammond, K. The matches, achieved by natural selection, between biological capacities and their natural loads. Experientia 48, 551–557 (1992). https://doi.org/10.1007/BF01920238

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01920238

Key words

Navigation