Skip to main content
Log in

Phase transitions and thermodynamic properties of anhydrous caffeine

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

Caffeine has been found to display a low-temperatureβ- and a high-temperatureα-modification. By quantitative DTA the following data were determined: transformation temperature 141±2°; enthalpy of transition 4.03±0.1 kJ·mole−1; enthalpy of fusion 21.6±0.5 kJ·mole−1; molar heat capacity

$$\begin{array}{*{20}c} {{\vartheta \mathord{\left/ {\vphantom {\vartheta {^\circ C}}} \right. \kern-\nulldelimiterspace} {^\circ C}}} & {100(\beta )} & {100(\alpha )} & {150(\alpha )} & {100(\alpha )} \\ {{{C^\circ _\mathfrak{p} } \mathord{\left/ {\vphantom {{C^\circ _\mathfrak{p} } {J \cdot K^{ - 1} \cdot mole^{ - 1} }}} \right. \kern-\nulldelimiterspace} {J \cdot K^{ - 1} \cdot mole^{ - 1} }}} & {271 \pm 9} & {287 \pm 10} & {309 \pm 11} & {338 \pm 10} \\ \end{array} $$

in good accord with drop-calorimetric data. For the constants of the equation log (p/Pa)=−A/T+B, static vapour pressure measurements on liquid and solidα-caffeine, and effusion measurements on solidβ-caffeine yielded:

$$\begin{array}{*{20}c} {A = 3918 \pm 37; 5223 \pm 28; 5781 \pm 35K^{ - 1} } \\ {B = 11.143 \pm 0.072; 13.697 \pm 0.057; 15.031 \pm 0.113} \\ \end{array} $$

. The evaporation coefficient ofβ-caffeine is 0.17±0.03.

Résumé

La cafféine présente une forme basse température (β) et haute température (α). Les données suivantes ont été déterminées par ATD quantitative: température de transformation 141±2°, enthalpie de transition 4.03±0.1 kJ·mole−1, enthalpie de fusion 21.6±0.5 kJ ·mole−1, chaleur spécifique molaire

$$\begin{array}{*{20}c} {{\vartheta \mathord{\left/ {\vphantom {\vartheta {^\circ C}}} \right. \kern-\nulldelimiterspace} {^\circ C}}} & {100(\beta )} & {100(\alpha )} & {150(\alpha )} & {100(\alpha )} \\ {{{C^\circ _\mathfrak{p} } \mathord{\left/ {\vphantom {{C^\circ _\mathfrak{p} } {J \cdot K^{ - 1} \cdot mole^{ - 1} }}} \right. \kern-\nulldelimiterspace} {J \cdot K^{ - 1} \cdot mole^{ - 1} }}} & {271 \pm 9} & {287 \pm 10} & {309 \pm 11} & {338 \pm 10} \\ \end{array} $$

en bon accord avec les données obtenues par calorimétrie à chute. Les mesures sous pression de vapeur statique effectuées sur la cafféine liquide et solide (α) ainsi que les mesures d'effusion sur la cafféine liquide et solide (α) ainsi que les mesures d'effusion sur la cafféine solide (β) ont donné pour les constantes de l'équation lg(p/Pa)=−A/T+ B:

$$\begin{array}{*{20}c} {A = 3918 \pm 37; 5223 \pm 28; 5781 \pm 35K^{ - 1} } \\ {B = 11.143 \pm 0.072; 13.697 \pm 0.057; 15.031 \pm 0.113} \\ \end{array} $$

. Le coefficient d'évaporation de la cafféineβ est 0.17±0.03.

Zusammenfassung

Es wurde festgestellt, daß Caffein bei niedrigen Temperaturen eineβ- und bei hohen Temperaturen eineα-Modifikation besitzt. Durch quantitative DTA wurden folgende Angaben bestimmt: Umwandlungstemperatur 141±2 °C, Umwandlungsenthalpie 4.03±0.1 kJ·Mol−1 Schmelzenthalpie 21.6±0.5 kJ·Mol−1, molare Wärmekapazität

$$\begin{array}{*{20}c} {{\vartheta \mathord{\left/ {\vphantom {\vartheta {^\circ C}}} \right. \kern-\nulldelimiterspace} {^\circ C}}} & {100(\beta )} & {100(\alpha )} & {150(\alpha )} & {100(\alpha )} \\ {{{C^\circ _\mathfrak{p} } \mathord{\left/ {\vphantom {{C^\circ _\mathfrak{p} } {J \cdot K^{ - 1} \cdot mole^{ - 1} }}} \right. \kern-\nulldelimiterspace} {J \cdot K^{ - 1} \cdot mole^{ - 1} }}} & {271 \pm 9} & {287 \pm 10} & {309 \pm 11} & {338 \pm 10} \\ \end{array} $$

Sie stimmten gut mit den tropfkalorimetrischen Daten überein. Statische Dampfdruckmessungen an flüssigem und festemα- und Effusionsmessungen an festemβ-Caffein ergaben für die Konstanten der Gleichung lg(p/Pa)=−A/T+ B:

$$\begin{array}{*{20}c} {A = 3918 \pm 37; 5223 \pm 28; 5781 \pm 35K^{ - 1} } \\ {B = 11.143 \pm 0.072; 13.697 \pm 0.057; 15.031 \pm 0.113} \\ \end{array} $$

. Der Verdampfungskoeffizient vonβ-Caffein beträgt 0.17±0.03.

Резюме

Было найдено, что кофе ин существует в низкотемпературнойβ- и высокотемператур нойα- модификации. С помо щью количественного ДТА были определены такие пар аметры как температура прев ращения 141 + 2 °С, энтальп ия перехода 4.03±0.1 кдж· ·моль−1, энтальпия пл авления 21.6±0.5 кдж·моль− 1 молярная теплоемкос ть

$$\begin{array}{*{20}c} {{\vartheta \mathord{\left/ {\vphantom {\vartheta {^\circ C}}} \right. \kern-\nulldelimiterspace} {^\circ C}}} & {100(\beta )} & {100(\alpha )} & {150(\alpha )} & {100(\alpha )} \\ {{{C^\circ _\mathfrak{p} } \mathord{\left/ {\vphantom {{C^\circ _\mathfrak{p} } {J \cdot K^{ - 1} \cdot mole^{ - 1} }}} \right. \kern-\nulldelimiterspace} {J \cdot K^{ - 1} \cdot mole^{ - 1} }}} & {271 \pm 9} & {287 \pm 10} & {309 \pm 11} & {338 \pm 10} \\ \end{array} $$

которые хорошо согла суются с данными капе льной калориметрии. Измере ния паров жидкого и твердого, а т акже эффузионные изм ерения твердогоβ-кофеина по зволили определить констант ы уравнения lg(p/Пa)=−А/Т+В:

$$\begin{array}{*{20}c} {A = 3918 \pm 37; 5223 \pm 28; 5781 \pm 35K^{ - 1} } \\ {B = 11.143 \pm 0.072; 13.697 \pm 0.057; 15.031 \pm 0.113} \\ \end{array} $$

. Коэффициент испарен ияβ-кофеина равен 0.17±0.03.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Eichler, Kaffee und Coffein, 2. Aufl., Springer, Berlin/Heidelberg/New York, 1976.

    Google Scholar 

  2. T. Ishii, Y. Kanzaki andK. Ishii, Yakuzaigaku, 26 (1966) 63.

    Google Scholar 

  3. W. W. Wendlandt, Thermal Methods of Analysis, Wiley, New York/Toronto, 1974, p. 421.

    Google Scholar 

  4. R. A. Baxter, inR. F. Schwenker andP. D. Garn, Thermal Analysis, Vol. 1, Academic Press, New York, 1969, p. 65.

    Google Scholar 

  5. P.Barberi, A.Paillet and Y.Machteau, IV. Symp. Europ. Fluor Chem., Ljubljana 1972; P.Barberi, Rev. Gén. de Thermique, 11 (1972) 124.

  6. F. Grønvold, Rev. Chim., Min. 11 (1974) 568.

    Google Scholar 

  7. G. Adam andF. Müller, Kolloid-Z. Z. Polym., 192 (1963) 29.

    Article  Google Scholar 

  8. I. Grabowska andR. Kaliszan, Acta Pol. Pharm., 29 (1972) 537.

    Google Scholar 

  9. J. Masse, R. Malaviolle, A. Chauvet, H. Massip andF. Sabon, Trav. Soc. Pharm. Montpellier, 34 (1974) 287.

    Google Scholar 

  10. P. S. Gabets, S. M. Reprintseva, N. V. Fedorovich andG. M. Volokhov, Khim.- Farm. Zh., 9 (1975) 23.

    Google Scholar 

  11. J. H. Stern andL. R. Beeninga, J. Phys. Chem., 79 (1975) 582.

    Article  Google Scholar 

  12. We thank Dr. H.Klinge (Laboratorium Wärmetechnik, Phys.-Technische Bundesanstalt, Bundesallee 100, 33 Braunschweig) for the performance of the dropcalorimetric measurements.

  13. A. Heiduschka andN. J. Meisner, Arch. Pharm. Ber. Dtsch. Pharm. Ges., 261 (1923) 104.

    Google Scholar 

  14. H. Cordes andH. Cammenga, Z. Physik. Chem. N. F., 45 (1965) 186.

    Google Scholar 

  15. G. W. Thomson andD. R. Douslin inA. Weissberger andB. W. Rossiter, Physical Methods of Chemistry Vol. 1, Part V, Wiley, New York/Toronto 1971, p. 74.

    Google Scholar 

  16. H. Cordes andH. K. Cammenga, Z. Physik. Chem. N. F., 63 (1969) 280.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of this research was sponsored by Arbeitskreis Industrieller Forschungsvereinigungen Köln, under contract with Forschungskreis der Ernährungsindustrie e. V., Hannover.

We thank Drs. K. Sylla and J. Wilkens (HAG AG, Bremen) for stimulation of the present work and for discussions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bothe, H., Cammenga, H.K. Phase transitions and thermodynamic properties of anhydrous caffeine. Journal of Thermal Analysis 16, 267–275 (1979). https://doi.org/10.1007/BF01910688

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01910688

Keywords

Navigation