Abstract
it is shown that a version of Maurey's extension theorem holds for Lipschitz maps between metric spaces satisfying certain geometric conditions, analogous to type and cotype. As a consequence, a classical Theorem of Kirszbraun can be generalised to include maps intoL p , 1<p<2. These conditions describe the wandering of symmetric Markov processes in the spaces in question. Estimates are obtained for the root-mean-square wandering of such processes in theL p spaces. The duality theory for these geometric conditions (in normed spaces) is shown to be closely related to the behavior of the Riesz transforms associated to Markov chains. Several natural open problems are collected in the final chapter.
Similar content being viewed by others
References
[Be]W. Beckner, Inequalities in Fourier Analysis, Ann. of Math. 102 (1975), 159–182.
[B]J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Arkiv für Math. 21 (1983), 163–168.
[BMW]J. Bourgain, V.D. Milman, H. Wolfson, On the type of metric spaces, Trans. Amer. Math. Soc. 294 (1986), 295–317.
[Bu]D. Burkholder, A geometrical condition that implies the existence of certain singular integrals of Banach-space-valued functions, Proc. Conf. Harmonic Analysis (in honor of A. Zygmund), Univeristy of Chicago, 1981.
[BG]Bui-Minh-Chi, V.I. Gurarii, Some characteristics of normed spaces and their applications to the generalisation of Parseval's inequality for Banach spaces, Sbor. Theor. Funct. 8 (1969), 74–91 (Russian).
[E]T. Enflo, Uniform homeomorphisms between Banach spaces, Séminaire Maurey-Schwartz 75–76. Exposé no. 18 Ecole Polytechnique, Paris.
[F]T. Figiel, On the moduli of convexity and smoothness, Studia Math. 56 (1976) 121–155.
[G]M. Gromov, Filling Riemannian manifolds, J. Diff. Geom. 18 (1983), 1–147.
[JL]W.B. Johnson, J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, Conference in modern analysis and probability, Contemp. Math. 26 Amer. Math. Soc. (1984).
[JLS]W.B. Johnson, J. Lindenstrauss, G. Schechtman, On Lipschitz embeddings of finite metric spaces into low dimensional normed spaces, Israel Seminar on G.A.F.A., Springer-Verlag, Lecture notes 1267, (1987).
[L1]J. Lindenstrauss, On non-linear projections in Banach spaces, Michigan Math. J. 11 (1964), 263–287.
[L2]J. Lindenstrauss, On the modulus of smoothness and divergent series in Banach spaces, Michigan Math. J. 10 (1963), 241–252.
[LT]J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II, Ergebnisse 97, Springer-Verlag (1979).
[MarP]M.B. Marcus, G. Pisier, Characterizations of almost surely continuousp-stable random Fourier series and strongly stationary processes, Acta Math. 152 (1984), 245–301.
[M]B. Maurey, Un théorème de prolongement, C.R. Acad. Sci. Paris 279 (1974), 329–332.
[MP]B. Maurey, G. Pisier, Séries de variables aléatoires vectorielles indépendentes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), 45–90.
[MS]V.D. Milman, G. Schechtman, Asymptotic theory of finite dimensional normed spaces, Lecture Notes 1200, Springer-Verlag (1986).
[P1]G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), 326–350.
[P2]G. Pisier, Holomorphic semi-groups and the geometry of Banach spaces, Ann. Math. 115 (1982), 375–392.
[S]I. Schoenberg, Metric spaces and completely monotonic functions, Ann. of Math. 39 (1938), 811–841.
[WW]J.H. Wells, L.R. Williams, Embeddings and Extensions in Analysis, Ergebnisse 84, Springer-Verlag (1975).
Author information
Authors and Affiliations
Additional information
Supported in part by NSF DMS-8807243.
Rights and permissions
About this article
Cite this article
Ball, K. Markov chains, Riesz transforms and Lipschitz maps. Geometric and Functional Analysis 2, 137–172 (1992). https://doi.org/10.1007/BF01896971
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01896971