Skip to main content
Log in

On Selberg's eigenvalue conjecture

  • Published:
Geometric & Functional Analysis GAFA Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • [BR]L. Barthel, D. Ramakrishnan, A nonvanishing result for twists ofL-functions ofGL(n), Duke Math. Jour. 74 (1994), 681–700.

    Google Scholar 

  • [BDHI]D. Bump, W. Duke, J. Hoffstein, H. Iwaniec, An estimate for the Hecke eigenvalues of Maass forms, Inter. Math. Res. Notices 4 (1992), 75–81.

    Google Scholar 

  • [BuGi]D. Bump, D. Ginzburg, Symmetric squareL-functions onGL(r), Ann. of Math. 136 (1992), 137–205.

    Google Scholar 

  • [D]P. Deligne, SGA 4 1/2 Cohomologie Etale, Lecture Notes in Math. 569, Springer-Verlag 1977.

  • [DuI]W. Duke, H. Iwaniec, Estimates for coefficients ofL-functions, Proc. C.R.M. Conf. on Automorphic Forms and Analytic Number Theory, Montréal (1989), 43–48.

  • [GJ]S. Gelbart, H. Jacquet, A relation between automorphic representations ofGL(2) andGL(3), Ann. Sci. Ecole Norm. Sup. 4e série 11 (1978), 471–552.

    Google Scholar 

  • [GoJ]R. Godement, H. Jacquet, Zeta Functions of Simple Algebras, Lecture Notes in Math. 260, Springer-Verlag, 1972.

  • [GolS]D. Goldfeld, P. Sarnak, Sums of Kloosterman sums, Invent. Math. 71 (1983), 243–250.

    Google Scholar 

  • [I]H. Iwaniec, Small eigenvalues of the Laplacian on Γ0(N), Acta Arith. 56 (1990), 65–82.

    Google Scholar 

  • [J]H. Jacquet, PrincipalL-functions of the linear group, Proc. Symp. Pure Math. 33:2, 63–86, American Math. Soc., Providence 1979.

    Google Scholar 

  • [JP-SS]H. Jacquet, I.I. Piatetski-Shapiro, J.A. Shalika, Rankin-Selberg convolutions, Amer. Jour. of Math 105 (1983), 367–364.

    Google Scholar 

  • [JSha1]H. Jacquet, J.A. Shalika, On Euler products and the classification of automorphic representations I, Amer. Jour. of Math. 103 (1981), 499–558.

    Google Scholar 

  • [JSha2]H. Jacquet, J.A. Shalika, Rankin-Selberg convolutions: Archimedean theory, Israel Math. Conf. Proceedings 2 (1990), 125–208.

    Google Scholar 

  • [L]Yu.V. Linnik, Additive problems and eigenvalues of modular operators, Proc. I.C.M. Stockholm (1962), 270–284.

  • [LuS]W. Luo, P. Sarnak, Quantum Ergodicity of Eigenfunctions onPSL 2(Z)/H 2, preprint (1994).

  • [MW]C. Mœglin, J.-L. Waldspurger, Le spectre résiduel deGL(n), Ann. Sci. Ecole Norm. Sup. 4e série 22 (1989), 605–674.

    Google Scholar 

  • [PP-S]S.J. Patterson, I.I. Piatetski-Shapiro, The symmetric squareL-function attached to a cuspidal automorphic representation ofGL(3), Math. Ann. 283 (1989), 551–572.

    Google Scholar 

  • [R]D. Rohrlich, Nonvanishing ofL-functions forGL(2), Invent. Math. 97 (1989), 383–401.

    Google Scholar 

  • [RuS]Z. Rudnick, P. Sarnak, Zeros of PrincipalL-functions and Random Matrix Theory, preprint.

  • [S]P. Sarnak, Prime Geodesic Theorems, Ph.D. Thesis, Stanford University (1980).

  • [Se]A. Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Symp. in Pure Math. 8, Amer. Math. Soc., Providence (1965), 1–15.

    Google Scholar 

  • [Ser]J.-P. Serre, letter to J.-M. Deshouillers (1981).

  • [Sh1]F. Shahidi, On certainL-functions, Amer. Jour. of Math. 103 (1981), 297–355.

    Google Scholar 

  • [Sh2]F. Shahidi, On the Ramanujan conjectures and finiteness of poles for certainL-functions, Ann. of Math. 127 (1988), 547–584.

    Google Scholar 

  • [Shi]G. Shimura, On the periods of modular forms, Math. Ann. 229 (1977), 211–221.

    Google Scholar 

  • [We]A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. 34 (1948), 204–207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NSF grants DMS-9304580, DMS-9400163 and DMS-9102082

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, W., Rudnick, Z. & Sarnak, P. On Selberg's eigenvalue conjecture. Geometric and Functional Analysis 5, 387–401 (1995). https://doi.org/10.1007/BF01895672

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01895672