Skip to main content
Log in

Voltage dependence of the basolateral membrane conductance in theAmphiuma collecting tubule

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The basolateral potassium conductance of cells of most epithelial cells plays an important role in the transcellular sodium transport inasmuch as the large negative equilibrium potential of potassium across this membrane contributes to the electrical driving force for Na+ across the apical membrane. In the present study, we have attempted to establish, theI-V curve of the basolateral membrane of theAmphiuma collecting tubule, a membrane shown to be K+ selective. TransepithelialI-V curves were obtained in short, isolated perfused collecting tubule segments. The “shunt” conductance was determined using amiloride to block the apical membrane Na+ conductance. In symmetrical solutions, the “shunt”I-V curve was linear (conductance: 2.2±0.3 mS·cm−2). Transcellular current was calculated by subtracting the “shunt” current from the transepithelial current in the absence of amiloride. Using intracellular microelectrodes, it was then possible to measure the basolateral membrane potential simultaneously with the transcellular current. The basolateral conductance was found to be voltage dependent, being activated by hyperpolarization: conductance values at −30 and −80 mV were 3.6±1.0 and 6.6±1.0 mS·cm−2, respectively. BasolateralI-V curves were thus clearly different from that predicted by the “constant field” model. These results indicate that the K+-selective basolateral conductance of an amphibian collecting tubule shows inward (“anomalous”) rectification. Considering the electrogenic nature basolateral Na−K-pump, this may account for coupling between pump-generated potential and basolateral K+ conductance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boulpaep, E.L. 1966. Potassium and chloride conductances of the peritubular membrane of proximal tubular cells ofNecturus kidney.Biophys. J. 6:133(abstr.)

    Google Scholar 

  2. Chase, H.S., Jr 1984. Does calcium couple the apical and basolateral membrane permeabilities in epithelia.Am. J. Physiol. 247:F869-F876

    Google Scholar 

  3. Davis, C.W., Finn, A.L. 1982. Sodium transport inhibition by amiloride reduces basolateral membrane potassium conductance in tight epithelia.Science 216:525–527

    PubMed  Google Scholar 

  4. De Weer, P. 1986. The electrogenic sodium pump: Thermodynamics and kinetics.In: Progress in Zoology. H.C. Luttgau, editor. Vol. 33, pp. 387–399. Gustav Fischer Verlag, New York

    Google Scholar 

  5. Germann, W.J., Ernst, S.A., Dawson, D.C. 1986. Resting and osmotically induced basolateral K conductances in turtle colon.J. Gen. Physiol. 88:253–274

    PubMed  Google Scholar 

  6. Germann, W.J., Lowy, M.E., Ernst, S.A., Dawson, D.C. 1986. Differentiation of two distinct K conductances in the basolateral membrane of turtle colon.J. Gen. Physiol. 88:237–251

    PubMed  Google Scholar 

  7. Gogelein, H., Greger, R. 1987. Properties of single K+ channels in the basolateral membrane of rabbit proximal straight tubules.Pfluegers Arch. 410:288–295

    Google Scholar 

  8. Grasset, E., Gunter-Smith, P., Schultz, S.G. 1983. Effects of Na-coupled alanine transport on intra-cellular K activities and the K conductance of the basolateral membrane ofNecturus small intestine.J. Membrane Biol. 71:89–94

    Google Scholar 

  9. Hagiwara, S. 1983. Membrane Potential-Dependent Ion Channels in Cell Membrane. pp. 65–79. Raven, New York

    Google Scholar 

  10. Helman, S.I., Fischer, R.S. 1977. Microelectrode studies of the active Na+ transport pathway of frog skin.J. Gen. Physiol. 69:571–604

    PubMed  Google Scholar 

  11. Helman, S.I., Nagel, W., Fischer, R.S. 1979. Ouabain on active transepithelial sodium transport in frog skin.J. Gen. Physiol. 74:105–127

    Google Scholar 

  12. Hille, B. 1984. Potassium channels and chloride channels.In: Ionic Channels of Excitable Membranes. B. Hille, editor. pp. 99–116. Sinauer, Sunderland, MA

    Google Scholar 

  13. Horisberger, J.-D., Giebisch, G. 1987. Na−K-pump current inAmphiuma collecting tubule: Dependence on voltage and external K concentration.J. Gen. Physiol. 90:22a(abstr.)

    Google Scholar 

  14. Horisberger, J.-D., Giebisch, G. 1988. Intracellular Na+ and K+ activities and membrane conductances in the collecting tubule ofAmphiuma. J. Gen. Physio. (in press)

  15. Horisberger, J.-D., Hunter, M., Stanton, B.A., Giebisch, G. 1987. The collecting tubule ofAmphiuma: II. Effects of potassium adaptation.Am. J. Physiol. 253:F1273-F1282

    PubMed  Google Scholar 

  16. Hunter, M., Horisberger, J.-D., Stanton, B.A., Giebisch, G. 1987. The collecting tubule of Amphiuma: I. Electrophysiological characterization.Am. J. Physiol. 253:F1263-F1272

    PubMed  Google Scholar 

  17. Kawahara, K., Hunter, M., Giebisch, G. 1987. Potassium channels inNecturus proximal tubule.Am. J. Physiol. 253:F488-F494

    PubMed  Google Scholar 

  18. Kirk, K.L., Dawson, D.C. 1983. Basolateral potassium channels in turtle colon.J. Gen. Physiol. 82:297–313

    PubMed  Google Scholar 

  19. Kirk, K.L., Halm, D.R., Dawson, D.C. 1980. Active sodium transport by turtle colon via an electrogenic Na−K exchange pump.Nature (London) 287:237–239

    Google Scholar 

  20. Lang, F., Messner, G., Rehwald, W. 1986. Electrophysiology of sodium-coupled transport in proximal renal tubules.Am. J. Physiol. 250:F953-F962

    PubMed  Google Scholar 

  21. Lewis, S.A., Hanrahan, J.W. 1985. Apical and basolateral membrane ionic channels in rabbit urinary bladder epithelium.Pfluegers Arch. 405(Suppl. 1)S83-S88

    Google Scholar 

  22. Lewis, S.A., Wills, N.K. 1983. Apical membrane permeability and kinetic properties of the sodium pump in rabbit urinary bladder.J. Physiol. (London) 341:169–184

    Google Scholar 

  23. Lindau, M., Fernandez, J.M. 1986. A patch-clamp study of histamine secreting cells.J. Gen. Physiol. 88:349–368

    PubMed  Google Scholar 

  24. Matsuda, H., Saigusa, A., Irisawa, H. 1987. Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg++.Nature (London) 325:156–159

    Google Scholar 

  25. Messner, G., Oberleithner, H., Lang, F. (1985). The effect of phenylalanine on the electrical properties of proximal tubule cells in the frog kidney.Pfluegers Arch.404:138–144

    Google Scholar 

  26. Nagel, W. 1985. Basolateral membrane ionic conductance in frog skin.Pfluegers Arch. 405:S39-S43

    Google Scholar 

  27. Palmer, L.G. 1984. Voltage-dependent block by amiloride and other monovalent cations of apical Na channels in the toad urinary bladder.J. Membrane Biol. 80:153–165

    Google Scholar 

  28. Parent, L., Cardinal, J., Sauvé, R. 1988. Single-channel analysis of a K channel at basolateral membrane of rabbit proximal convoluted tubule.Am. J. Physiol. 254:F105-F113

    PubMed  Google Scholar 

  29. Sackin, H., Boulpaep, E.L., 1983. Rheogenic transport in the renal proximal tubule.J. Gen. Physiol. 82:819–851

    PubMed  Google Scholar 

  30. Sackin, H., Palmer, L.G. 1987. Basolateral potassium channels in renal proximal tubule.Am. J. Physiol. 253:F476-F487

    PubMed  Google Scholar 

  31. Schoen, H.F., Erlij, D. 1985. Current-voltage relations of the apical and basolateral membranes of the frog skin.J. Gen. Physiol. 86:257–287

    PubMed  Google Scholar 

  32. Schultz, S.G. 1985. Regulatory mechanisms in sodium-absorbing epithelia.In: The Kidney: Physiology and Pathology. D.W. Seldin and G. Giebisch, editors pp. 189–198. Raven, New York

    Google Scholar 

  33. Schultz, S.G., Thompson, S.M., Hudson, R.L., Thomas, S.R., Suzuki Y. 1984. Electrophysiology ofNecturus urinary bladder: II. Time-dependent current-voltage relations of the basolateral membranes.J. Membrane Biol. 79:257–269

    Google Scholar 

  34. Takeda, K., Schini, V., Stoeckel, H. 1987. Voltage-activated potassium, but not calcium currents in cultured bovine aortic endothelial cells.Pfluegers Arch. 410:385–393

    Google Scholar 

  35. Thomas, S.R., Suzuki, Y., Thompson, S.M., Schultz, S.G. 1983. Electrophysiology ofNecturus urinary bladder: I. “Instantaneous” current-voltage relations in the presence of varying mucosal sodium concentrations.J. Membrane Biol. 73:157–175

    Google Scholar 

  36. Thompson, S.M., Suzuki, Y., Schultz, S.G. 1982. The electrophysiology of rabbit descending colon: II. Current-voltage relations of the apical membrane, the basolateral membrane and the parallel pathways.J. Membrane Biol. 66:55–61

    Google Scholar 

  37. Thompson, S.M., Suzuki, Y., Schultz, S.G. 1982. The electrophysiology of the rabbit descending colon: I. Instantaneous transepithelial current-voltage relations and the current-voltage relations of the Na-entry mechanism.J. Membrane Biol. 66:41–54

    Google Scholar 

  38. Warncke, J., Lindemann, B. 1985. Voltage dependence of Na channel blockage by amiloride: Relaxation effects in admittance spectra.J. Membrane Biol. 86:255–265

    Google Scholar 

  39. Welling, P.A., O'Neil, R.G. 1987. Cell swelling increases basolateral membrane Cl and K conductances of the rabbit proximal straight tubule.Kidney Int. 31:452(abstr.)

    Google Scholar 

  40. Wills, N.K., Eaton, D.C., Lewis, S.A., Ifshin, M.S. 1979. Current-voltage relationship of the basolateral membrane of a tight epithelium.Biochim. Biophys. Acta 555:519–523

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horisberger, JD., Giebisch, G. Voltage dependence of the basolateral membrane conductance in theAmphiuma collecting tubule. J. Membrain Biol. 105, 257–263 (1988). https://doi.org/10.1007/BF01871002

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871002

Key Words

Navigation