Skip to main content
Log in

Improvements in optical methods for measuring rapid changes in membrane potential

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

In an effort to increase the utility of optical methods for measuring membrane potential in excitable cells, an additional 369 dyes were tested on giant axons from the squid. Several promising dyes with relatively large absorption and fluorescence signals are described. In addition, a simple modification of the apparatus led to a sixfold increase in the size of dye-related birefringence signals. In preparations with a suitable geometry, these signals are as large as absorption signals but photodynamic damage and bleaching are eliminated when wavelengths longer than the absorption band are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baylor, S.M., Chandler, W.K., Marshall, M.W. 1981. Studies in skeletal muscle using optical probes of membrane potential.In: Regulation of Muscle Contraction: Excitation Contraction Coupling. A.D. Grinnell and M.A.B. Brczier, editors. Academic Press, New York (in press)

    Google Scholar 

  • Bennett, H.S. 1950. The microscopical investigation of biological materials with polarized light.In: McClung's Handbook of Microscopical Technique. (3rd ed.), R.M. Jones, editor, pp. 591–677. Hoeber, New York

    Google Scholar 

  • Bezanilla, F., Armstrong, C.M. 1972. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons.J. Gen. Physiol. 60:588

    Google Scholar 

  • Boyle, M.B., Cohen, L.B. 1980. Birefringence signals that monitor membrane potential in cell bodies of molluscan neurons.Fed. Proc. 39:2130

    Google Scholar 

  • Chandler, W.K., Meves, H. 1965. Voltage clamp experiments on internally perfused giant axons.J. Physiol. (London) 180:788

    Google Scholar 

  • Cohen, L.B., Hille, B., Keynes, R.D. 1970. Changes in axon birefringence during the action potential.J. Physiol. 211:495

    Google Scholar 

  • Cohen, L.B., Kamino, K., Lesher, S., Wang, C.-H., Waggoner, A.S., Grinvald, A. 1977. Possible improvements in optical methods for monitoring membrane potential.Biol. Bull. Woods Hole 153:419

    Google Scholar 

  • Cohen, L.B., Keynes, R.D., Landowne, D. 1972. Changes in light-scattering that accompany the action potential in squid giant axons: Potential-dependent components.J. Physiol. (London) 244:701

    Google Scholar 

  • Cohen, L.B., Salzberg, B.M. 1978. Optical measurement of membrane potential.Rev. Physiol. Biochem. Pharmacol. 83:35

    Google Scholar 

  • Cohen, L.B., Salzberg, B.M., Davila, A.V., Ross, W.N., Landowne, D., Waggoner, A.S., Wang, C.-H. 1974. Changes in axon fluorescence during activity: Molecular probes of membrane potential.J. Membrane Biol. 19:1

    Google Scholar 

  • Davila, H.V., Cohen, L.B., Salzberg, B.M., Shrivastav, B.B. 1974. Changes in ANS and TNS fluorescence in giant axons fromLoligo.J. Membrane Biol. 15:29

    Google Scholar 

  • Fry, D.J. 1977. Cyanine dyes and related compounds.In: Rodd's Chem. Carbon. Compd. (2nd ed.) 4B. S. Coffey and M.F. Ansell, editors, pp. 369–422. Elsevier, Amsterdam

    Google Scholar 

  • Grinvald, A., Cohen, L.B., Lesher, S., Boyle, M.B. 1981a. Simultaneous optical monitoring of activity of many neurons in invertebrate ganglia using a 124 element photodiode array.J. Neurophysiol. (in press)

  • Grinvald, A., Kamino, K., Lesher, S., Cohen, L.B., Wang, C.-H., Waggoner, A.S. 1978. Larger fluorescence and birefringence signals for optical monitoring of membrane potential.Biophys. J. 21:82a

    Google Scholar 

  • Grinvald, A., Ross, W.N., Farber, I., 1981b. Simultaneous optical measurements of electrical activity from multiple sites on the processes of cultured neurons.Proc. Natl. Acad. Sci. USA (in press)

  • Hamer, F.M. 1964. The Cyanine Dyes and Related Compounds. John & Wiley Son, New York

    Google Scholar 

  • Hirota, A., Fujii, S., Kamino, K. 1979. Optical monitoring of spontaneous electrical activity of 8-somite embryonic chick heart.Jpn. J. Physiol. 29:635

    Google Scholar 

  • Loew, L.M., Scully, S., Simpson, L., Waggoner, A.S. 1979. Evidence for a charge-shift electrochromic mechanism in a probe of membrane potential.Nature (London) 281:497

    Google Scholar 

  • Nakajima, S., Gilai, A. 1980. Action potentials of isolated single muscle fibers recorded by potential sensitive dyes.J. Gen. Physiol. 76:729

    Google Scholar 

  • Ross, W.N., Reichardt, L.F. 1979. Species-specific effects on the optical signals of voltage-sensitive dyes.J. Membrane Biol. 48:343

    Google Scholar 

  • Ross, W.N., Salzberg, B.M., Cohen, L.B., Grinvald, A., Davila, H.V., Waggoner, A.S., Wang, C.-H. 1977. Changes in absorption, fluorescence, dichroism, and birefringence in stained giant axons: Optical measurement of membrane potential.J. Membrane Biol. 33:141

    Google Scholar 

  • Salzberg, B.M. 1978. Optical signals from squid giant axons following perfusion or superperfusion with potentiometric probes.Biol. Bull. Woods Hole 155:463

    Google Scholar 

  • Salzberg, B.M. 1979. Perfusion and superfusion of giant axons with potentiometric probes — fast optical signals.Biophys. J. 25:13a

    Google Scholar 

  • Salzberg, B.M., Grinvald, A., Cohen, L.B., Davila, H.V., Ross, W.N. 1977. Optical recording of neuronal activity in an invertebrate central nervous system: Simultaneous monitoring of several neurons.J. Neurophysiol. 40:1281

    Google Scholar 

  • Senseman, D.M., Salzberg, B.M. 1980. Electrical activity in an exocrine gland: Optical recording with a potentiometric dye.Science 208:1269

    Google Scholar 

  • Strumer, D.M. 1977. Synthesis and properties of cyanine and related dyes.In: The Chemistry of Heterocyclic Compounds. Vol. 13. Interscience, New York

    Google Scholar 

  • Stuper, A.U., Jurs, P.C. 1976. ADAPT: A computer system for automated data analysis using pattern recognition techniques.J. Chem. Inf. Computer Sci. 16:99

    Google Scholar 

  • Tasaki, I., Watanabe, A., Takenaka, T. 1962. Resting and action potnetials of intracellularly perfused squid giant axons.Proc. Nat. Acad. Sci. USA 48:1177

    Google Scholar 

  • Valenzeno, D.P., Pooler, J.P. 1978. Inhibition and enhancement of photochemical modification of lobster axon membranes sensitized by dyes or optical probes.Biophys. J. 21:43a

    Google Scholar 

  • Waggoner, A.S. 1979. Dye indicators of membrane potential.Annu. Rev. Biophys. Bioeng. 8:47

    Google Scholar 

  • Waggoner, A.S., Grinvald, A. 1977. Mechanism of rapid optical changes of potential sensitive dyes.Ann. N.Y. Acad. Sci. 303:217

    Google Scholar 

  • Woolum, J.C., Strumwasser, F. 1978. Membrane-potential-sensitive dyes for optical monitoring of activity inAplysia neurons.J. Neurobiol. 9:185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, R.K., Salzberg, B.M., Grinvald, A. et al. Improvements in optical methods for measuring rapid changes in membrane potential. J. Membrain Biol. 58, 123–137 (1981). https://doi.org/10.1007/BF01870975

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870975

Keywords

Navigation