Skip to main content
Log in

Two-phase partition studies of alkali cation complexation by ionophores

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The partition of alkali cations and anions between an aqueous and an immiscible organic phase has been studied in the absence and presence of neutral and carboxylic ionophores of the valinomycin and nigericin types, respectively. Cation extraction into the organic phase was augmented considerably by the ionophores, and a cation specificity of K+≧Rb+>Cs+≫Na+ was found for all the neutral ionophores tested. Evidence is given that the actual values of ion specificity are a function of the solvent polarity, especially for valinomycin where an inversion of the K+/Rb+ specificity was observed. The ionophores examined have the following rank order of effectiveness for K+ extraction into a standard organic phase consisting of 70% toluene-30%n-butanol: valinomycin>18-crown-6≫trinactin>enniatin B≈dinactin>monactin>nonactin. The ion affinity and selectivity data thus obtained have been compared with data previously reported.

In a toluene-butanol solvent, extraction of cations in the absence of ionophores occurs as ion pairs. On the other hand, the neutral ionophores extract the cations by the mechanism of complexation, with the lipophilic anions coextracted as free gegenionic species at lower ionophore complex concentrations. When the concentration of extracted cations exceeds 1×10−4 m, ion pairing between the ionophore complex and the anion occurs, and this tendency increases with increasing concentration and decreasing polarity of the organic phase. Anion pairing with the complexed cations is much less than for the free cations and this effect appears to be due to the larger distance of closest approach of the anion for the complexed cation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonne, D.J., Kowalsky, A. 1974. Ion pairing of ionophore potassium complexes: NMR studies with paramagnetic anions.Biochemistry 13:731

    PubMed  Google Scholar 

  2. Ciani, S., Eisenman, G., Szabo, G. 1969. A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on the electric properties of bilayer membranes.J. Membrane Biol. 1:1

    Google Scholar 

  3. Diebler, H., Eigen, M., Ilgenfritz, G., Massa, G., Winkler, R. 1969. Kinetics and mechanism of reactions of main group metal ions with biological carriers.Pure Appl. Chem. 20:93

    Google Scholar 

  4. Eisenman, G., Ciani, S., Szabo, G. 1969. The effects of the macrotetralide actin antibiotics on the equilibrium extraction of alkali metal salts into organic solvents.J. Membrane Biol. 1:294

    Google Scholar 

  5. Eisenman, G., Szabo, G., McLaughlin, S.G.A., Ciani, S. 1973. Molecular basis for the action of macrocyclic carriers on passive ionic translocation across lipid bilayer membranes.Bioenergetics 4:93

    Google Scholar 

  6. Frensdorff, H.K. 1971. Salt complexes of cyclic polyethers: Distribution equilibria.J. Amer. Chem. Soc. 93:4684

    Google Scholar 

  7. Grell, E., Funck, T. Eggers, F. 1972. Dynamic properties and membrane activity of ion specific antibiotics.In: Molecular Mechanisms of Antibiotic Action on Protein Biosynthesis and Membranes, Proc. of a Symposium, Granada. E. Muñoz, F. García-Ferrándiz, and D. Vázquez, editors, pp. 646–685

  8. Haynes, D.H. 1970. Equilibrium and Kinetic Properties of Ionophores of the Valinomycin Type in Model Systems and Biological Membranes. Ph. D. Thesis. University of Pennsylvania, Philadelphia, Pa., p. 246

    Google Scholar 

  9. Haynes, D.H. 1972. The kinetics of potassium ion complexation by ionophores.FEBS Letters 20:221

    PubMed  Google Scholar 

  10. Haynes, D.H., Kowalsky, A., Pressman, B.C. 1969. Application of nuclear magnetic resonance to the conformational changes in valinomycin during complexation.J. Biol. Chem. 244:502

    PubMed  Google Scholar 

  11. Haynes, D.H., Wiens, T., Pressman, B.C. 1974. Turnover numbers for ionophorecatalyzed cation transport across the mitochondrial membrane.J. Membrane Biol. 18:23

    Google Scholar 

  12. Ivanov, V.T., Laine, I.A., Abdulaev, N.D., Senyavina, L.B., Popov, E.M., Ovchinnikov, Y.A., Shemyakin, M.M. 1969. The physicochemical basis of the functioning of biological membranes: The conformation of valinomycin and its K+ complex in solution.Biochem. Biophys. Res. Commun. 34:803

    PubMed  Google Scholar 

  13. Johnson, J.R., Christan, S.D., Affsprung, H.E. 1966. The molecular complexity of water in organic solvents. Part II.J. Chem. Soc. (A) 1966:77

    Google Scholar 

  14. Ohnishi, M., Urry, D.W. 1969. Temperature dependence of amide proton chemical shifts: The secondary structures of gramicidin S and valinomycin.Biochem. Biophys. Res. Commun. 36:194

    PubMed  Google Scholar 

  15. Ovchinnikov, Y.A., Ivanov, V.T., Evstratov, A.V., Bystrov, V.F., Abdullaev, N.D., Popov, E.M., Lipkind, G.M., Arkhipova, S.F., Efremov, E.S., Shemyakin, M.M. 1969. The physicochemical basis of the functioning of biological membranes: Dynamic conformational properties of enniatin B and its K+ complex in solution.Biochem. Biophys. Res. Commun. 37:668

    PubMed  Google Scholar 

  16. Parsegian, A. 1969. Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems.Nature 221:344

    Google Scholar 

  17. Pressman, B.C. 1968. Ionophorous antibiotics as models for biological transport.Fed. Proc. 27:1283

    PubMed  Google Scholar 

  18. Pressman, B.C., Harris, E.J., Jagger, W.S., Johnson, J.H. 1967. Antibiotic-mediated transport of alkali ions across lipid barriers.Proc. Nat. Acad. Sci. 58:1949

    PubMed  Google Scholar 

  19. Pressman, B.C., Haynes, D. H. 1970. Ionophorous agents as mobile ion carriers.In: The Molecular Basis of Membrane Function. D.C. Tosteson, editor. p. 221–246. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  20. Prestegard, J.H., Chan, S.I. 1970. Proton magnetic resonance studies of the cation-binding properties of nonactin. II. Comparison of the sodium ion, potassium ion, and cesium ion complexes.J. Amer. Chem. Soc. 92:4440

    Google Scholar 

  21. Szabo, G., Eisenman, G., Ciani, S. 1969. The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes.J. Membrane Biol. 1:346

    Google Scholar 

  22. Traube, J. 1904. Theorie der Osmose und Narkose.Pflüg. Arch. Ges. Physiol. 105:541

    Google Scholar 

  23. Wipf, H.K., Pioda, L.A.R., Stafanac, A., Simon, W. 1968. Komplexe von Enniatinen und anderen Antibiotica mit Alkalimetall-Ionen.Helv. Chim. Acta 51:377

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haynes, D.H., Pressman, B.C. Two-phase partition studies of alkali cation complexation by ionophores. J. Membrain Biol. 18, 1–21 (1974). https://doi.org/10.1007/BF01870099

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870099

Keywords

Navigation