Skip to main content
Log in

A new method for the reconstitution of the anion transport system of the human erythrocyte membrane

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The anion transport protein of the human erythrocyte membrane, band 3, was solubilized and purified in solutions of the non-ionic detergent Triton X-100. It was incorporated into spherical lipid bilayers by the following procedure: (1) Dry phosphatidylcholine was suspended in the protein solution. Octylglucopyranoside was added until the milky suspension became clear. (2) The sample was dialyzed overnight against detergentfree buffer. (3) Residual Triton X-100 was removed from the opalescent vesicle suspension by sucrose density gradient centrifugation and subsequent dialysis. Sulfate efflux from the vesicles was studied, under exchange conditions, using a filtration method. Three vesicle subpopulations could be distinguished by analyzing the time course of the efflux. One was nearly impermeable to sulfate, and efflux from another was due to leaks. The largest subpopulation, however, showed transport characteristics very similar to those of the anion transport system of the intact erythrocyte membrane: transport numbers (at 30°C) close to 20 sulfate molecules per band 3 and min, an activation energy of approx. 140 kJ/mol, a pH maximum at pH 6.2, saturation of the sulfate flux at sulfate concentrations around 100mm, inhibition of the flux by H2DIDS and flufenamate (approx.K l-values at 30°C: 0.1 and 0.7 μm, respectively), and “right-side-out” orientation of the transport protein (as judged from the inhibition of sulfate efflux by up to 98% by externally added H2DIDS). Thus, the system represents, for the first time, a reconstitution of all the major properties of the sulfate transport across the erythrocyte membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachmann, L., Schmitt-Fumian, W.W. 1973. Spray-freezing and freeze-etching.In: Freeze-Etching, Techniques and Applications. E.L. Benedetti and P. Favard, editors. pp. 73–99. Soc. Franc. Microscopie Electronique, Paris

    Google Scholar 

  2. Bartlett, G.R. 1959. Phosphorus assay in column chromatography.J. Biol. Chem. 234:466–468

    PubMed  Google Scholar 

  3. Barzilay, M., Cabantchik, Z.I. 1979. Anion transport in red blood cells: II. Kinetics of reversible inhibition by nitroaromatic sulfonic acids.Membr. Biochem. 2:255–281

    PubMed  Google Scholar 

  4. Cabantchik, Z.I., Knauf, P., Rothstein, A. 1978. The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of “probes.”Biochim. Biophys. Acta 515:239–302

    PubMed  Google Scholar 

  5. Cabantchik, Z.I., Loyter, A. 1980. Functional characterization of isolated membrane transport systems. The erythrocyte anion transporter as a model.In: Membrane Transport in Erythrocytes. U.V. Lassen, H.H. Ussing, and J.O. Wieth, editors. pp. 373–383. Munksgaard, Copenhagen

    Google Scholar 

  6. Cabantchik, Z.I., Volsky, D.J., Ginsburg, H., Loyter, A. 1980. Reconstitution of the erythrocyte anion transport system:In vitro andin vivo approaches.Ann. N.Y. Acad. Sci. 341:444–454

    PubMed  Google Scholar 

  7. Cousin, J.-L., Motais, R. 1979. Inhibition of anion permeability by amphiphilic compounds in human red cell: Evidence for an interaction of niflumic acid with the band 3 protein.J. Membrane Biol. 46:125–153

    Google Scholar 

  8. Cousin, J.-L., Motais, R. 1982. Inhibition of anion transport in the red blood cell by anionic amphiphilic compounds: I. Determination of the flufenamate-binding site by proteolytic dissection of the band 3 protein.Biochim. Biophys. Acta 687:147–155

    Google Scholar 

  9. Darmon, A., Bar-Noy, S., Ginsburg, H., Cabantchik, Z.I. 1985. Oriented reconstitution of red cell membrane proteins and assessment of their transmembrane disposition by immunoquenching of fluorescence.Biochim. Biophys. Acta 817:238–248

    PubMed  Google Scholar 

  10. Darmon, A., Zangrill, M., Cabantchik, Z.I. 1983. New approaches for the reconstitution and functional assay of membrane transport proteins. Application to the anion transporter of human erythrocytes.Biochim. Biophys. Acta 727:77–88

    PubMed  Google Scholar 

  11. Dorst, H.-J., Schubert, D. 1979. Self-association of band 3 protein from human erythrocyte membranes in aqueous solutions.Hoppe-Seyler's Z. Physiol. Chem. 360:1605–1618

    PubMed  Google Scholar 

  12. Fairbanks, G., Steck, T.L., Wallach, D.F.H. 1971. Electrophoretic analysis of the major peptides of the human erythrocyte membrane.Biochemistry 10:2606–2617

    PubMed  Google Scholar 

  13. Fraley, R., Wilschut, J., Düzgünes, N., Smith, C., Papahadjopoulos, D. 1980. Studies on the mechanism of membrane fusion: Role of phosphate in promoting calcium induced fusion of phospholipid vesicles.Biochemistry 19:6021–6029

    PubMed  Google Scholar 

  14. Gerritsen, W.J., Verkley, A.J., Zwaal, R.F.A., Van Deenen, L.L.M. 1978. Freeze-fracture appearance and disposition of band 3 protein from the human erythrocyte membrane in lipid vesicles.Eur. J. Biochem. 85:255–261

    PubMed  Google Scholar 

  15. Jennings, M.L. 1984. Oligomeric structure and the anion transport function of human erythrocyte band 3 protein.J. Membrane Biol. 80:105–117

    Google Scholar 

  16. Kampmann, L., Lepke, S., Fasold, H., Fritsch, G., Passow, H. 1982. The kinetics of intramolecular cross-linking of the band 3 protein in the red blood cell membrane by 4,4′-diisothiocyanodihydrostilbene-2,2′-disulfonic acid (H2DIDS).J. Membrane Biol. 70:199–216

    Google Scholar 

  17. Knauf, P.A. 1979. Erythrocyte anion exchange and the band 3 protein: Transport kinetics and molecular structure. Curr.Topics Membr. Transp. 12:249–363

    Google Scholar 

  18. Köhne, W. 1982. Rekonstitution des Anionentransportsystems der Erythrotyten-Membran durch Einbau des Transportproteins in Lipid-Vesikel. Allgemeine Eigenschaften und Lipidabhängigkeit des rekonstituierten Systems. Ph.D. Thesis. RWTH, Aachen

    Google Scholar 

  19. Köhne, W., Deuticke, B., Haest, C.W.M. 1983. Phospholipid dependence of the anion transport system of the human erythrocyte membrane. Studies on reconstituted band 3/lipid vesicles.Biochim. Biophys. Acta 730:139–150

    PubMed  Google Scholar 

  20. Köhne, W., Haest, C.W.M., Deuticke, B. 1981. Mediated transport of anions in band 3-phospholipid vesicles.Biochim. Biophys. Acta 664:108–120

    PubMed  Google Scholar 

  21. Lukacovic, M.F., Feinstein, M.B., Sha'afi, R.J., Perrie, S. 1981. Purification of stabilized band 3 protein of the human erythrocyte membrane and its reconstitution into liposomes.Biochemistry 20:3145–3151

    PubMed  Google Scholar 

  22. Lukacovic, M.F., Toon, M.R., Solomon, A.K. 1984. Site of red cell cation leak induced by mercurial sulfhydryl reagents.Biochim. Biophys. Acta 772:313–320

    PubMed  Google Scholar 

  23. Macara, J.G., Cantley, L.C. 1983. The structure and function of band 3.In: Cell Membranes. Methods and Reviews. E. Elson, W. Frazier, and L. Glasier, editors. Vol. 1, pp. 41–87. Plenum, New York

    Google Scholar 

  24. Pappert, G., Schubert, D. 1983. The state of association of band 3 protein of the human erythrocyte membrane in solutions of nonionic detergents.Biochim. Biophys. Acta 730:32–40

    PubMed  Google Scholar 

  25. Passow, H. 1986. Molecular aspects of the band 3 proteinmediated anion transport across the red blood cell membrane.Rev. Physiol. Biochem. Pharmacol. 103:61–203

    PubMed  Google Scholar 

  26. Ross, A.H., McConnell, H.M. 1977. Reconstitution of band 3, the erythrocyte anion exchange protein.Biochem. Biophys. Res. Commun. 74:1318–1325

    PubMed  Google Scholar 

  27. Ross, A.H., McConnell, H.M. 1978. Reconstitution of the erythrocyte anion channel.J. Biol. Chem. 253:4777–4782

    PubMed  Google Scholar 

  28. Rothstein, A., Cabantchik, Z.I., Balshin, M., Juliano, R. 1975. Enhancement of anion permeability in lecithin vesicles by hydrophobic proteins extracted from red blood cell membranes.Biochem. Biophys. Res. Commun. 64:144–150

    PubMed  Google Scholar 

  29. Scheuring, U., Kollewe, K., Schubert, D. 1984. A new method for the reconstitution of the anion transport system of the human erythrocyte membrane.Hoppe-Seyler's Z. Physiol. Chem. 365:1056–1057

    Google Scholar 

  30. Schnell, K.F. 1972. On the mechanism of inhibition of the sulfate transfer across the human erythrocyte membrane.Biochim. Biophys. Acta 282:265–276

    PubMed  Google Scholar 

  31. Schnell, K.F., Gerhardt, S., Schöppe-Fredenburg, A. 1977. Kinetic characteristics of the sulfate self-exchange in human red blood cells and red blood cell ghosts.J. Membrane Biol. 30:319–350

    Google Scholar 

  32. Schubert, D., Boss, K., Dorst, H.-J., Flossdorf, J., Pappert, G. 1983. The nature of the stable noncovalent dimers of band 3 protein from erythrocyte membranes in solutions of Triton X-100.FEBS Lett. 163:81–84

    PubMed  Google Scholar 

  33. Schwoch, G., Rudloff, V., Wood-Guth, I., Passow, H. 1974. Effect of temperature on sulfate movements across chemically or enzymatically modified membranes of human red blood cells.Biochim. Biophys. Acta 339:126–138

    PubMed  Google Scholar 

  34. Tanford, C., Reynolds, J.A. 1976. Characterization of membrane proteins in detergent solutions.Biochim. Biophys. Acta 457:133–170

    PubMed  Google Scholar 

  35. Ueno, M., Tanford, C., Reynolds, J.A. 1984. Phospholipid vesicle formation using nonionic detergents with low monomer solubility. Kinetic factors determine vesicle size and permeability.Biochemistry 23:3070–3076

    PubMed  Google Scholar 

  36. Van Hoogevest, P., Du Maine, A.P.M., De Kruijff, B., De Gier, J. 1984. The influence of lipid composition on the barrier properties of band 3-containing lipid vesicles.Biochim. Biophys. Acta 777:241–252

    PubMed  Google Scholar 

  37. Van Hoogevest, P., Van Duijn, G., Batenburg, A.M., De Kruijff, B., De Gier, J. 1983. The anion permeability of vesicles reconstituted with intrinsic proteins from the human erythrocyte membrane.Biochim. Biophys. Acta 734:1–17

    PubMed  Google Scholar 

  38. Wolosin, J.M. 1980. A procedure for membrane-protein reconstitution and the functional reconstitution of the anion transport system of the human erythrocyte membrane.Biochem. J. 189:35–44

    PubMed  Google Scholar 

  39. Yu, J., Steck, T.L. 1975. Isolation and characterization of band 3, the predominant polypeptide of the human erythrocyte membrane.J. Biol. Chem. 250:9170–9175

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheuring, U., Kollewe, K., Haase, W. et al. A new method for the reconstitution of the anion transport system of the human erythrocyte membrane. J. Membrain Biol. 90, 123–135 (1986). https://doi.org/10.1007/BF01869930

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869930

Key Words

Navigation