Skip to main content
Log in

Electrical hemolysis of human and bovine red blood cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The external electric field strength required for electrical hemolysis of human red blood cells depends sensitively on the composition of the external medium. In isotonic NaCl und KCl solutions the onset of electrical hemolysis is observed at 4 kV per cm and 50% hemolysis at 6 kV per cm, whereas increasing concentrations of phosphate, sulphate, sucrose, inulin and EDTA shift the onset and the 50% hemolysis-value to higher field strengths. The most pronounced effect is observed for inulin and EDTA. In the presence of these substances the threshold value of the electric field strength is shifted to 14 kV per cm. This is in contrast to the dielectric breakdown voltage of human red blood cells which is unaltered by these substances and was measured to be ∼1 V corresponding in the electrolytical discharge chamber to an external electric field strength of 2 to 3 kV per cm. On the other hand, dielectric breakdown of bovine red blood cell membranes occurs in NaCl solution at 4 to 5 kV per cm and is coupled directly with hemoglobin release. The electrical hemolysis of cells of this species is unaffected by the above substances with exception of inulin. Inulin suppressed the electrical hemolysis up to 15 kV per cm. The data can be explained by the assumption that the reflection coefficients of the membranes of these two species to bivalent anions and uncharged molecules are field-dependent to a different extent. This explanation implies that electrical hemolysis is a secondary process of osmotic nature induced by the reversible permeability change of the membrane (dielectric breakdown) in response to an electric field. This view is supported by the observation that the mean volumes of ghost cells obtained by electrical hemolysis can be changed by changing the external phosphate concentration during hemolysis and resealing, or by subjecting the cells to a transient osmotic stress immediately after the electrical hemolysis step. An interesting finding is that the breakdown voltage, although constant throughout each normally distributed ghost size distribution, increases with increasing mean volume of the ghost populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernhardt, J., Pauly, H. 1973. On the generation of potential differences across membranes of ellipsoidal cells in an alternating field.Biophysik 10:89

    Google Scholar 

  2. Bjerrum, J., Schwarzenbach, G., Sillén, L.G. 1957. Stability Constants. The Chemical Society, London

    Google Scholar 

  3. Bodemann, H., Passow, H. 1972. Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis.J. Membrane Biol. 8:1

    Google Scholar 

  4. Burger, S.P., Fujii, T., Hanahan, D.J. 1968. Stability of the bovine erythrocyte membrane. Release of enzymes and lipid components.Biochemistry 7:3682

    Google Scholar 

  5. Coster, H.G.L., Zimmermann, U. 1975. Direct demonstration of dielectric breakdown of the membranes ofValonia utricularis: The role of energy dissipation.Biochim. Biophys. Acta 382:410

    Google Scholar 

  6. Coster, H.G.L., Zimmermann, U. 1975. The mechanism of electrical breakdown in the membranes ofValonia utricularis.J. Membrane Biol. 22:73

    Google Scholar 

  7. Coster, H.G.L., Zimmermann, U. 1975. Direct demonstration of dielectric breakdown of the membranes ofValonia utricularis.Z. Naturforsch. 30c:77

    Google Scholar 

  8. Kedem, O., Katchalsky, A. 1958. Thermodynamic analysis of the permeability of biological membranes to nonelectrolytes.Biochim. Biophys. Acta 27:229

    Google Scholar 

  9. Lowenstein, L.M. 1960. The effect of albumin on osmotic hemolysis.Exp. Cell Res. 20:56

    Google Scholar 

  10. Neumann, E., Rosenheck, K. 1972. Permeability changes induced by electric impulses in vesicular membranes.J. Membrane Biol. 10:279

    Google Scholar 

  11. Pilwat, G., Zimmermann, U., Riemann, F. 1975. Dielectric breakdown measurements of human and bovine erythrocyte membranes using benzyl alcohol as a probe molecule.Biochim. Biophys. Acta 406:424

    Google Scholar 

  12. Riemann, F., Zimmermann, U., Pilwat, G. 1975. Release and uptake of haemoglobin and ions in red blood cells induced by dielectric breakdown.Biochim. Biophys. Acta 394:449

    Google Scholar 

  13. Rosenheck, K., Lindner, P., Pecht, I. 1975. Effect of electric fields on light-scattering and fluorescence of chromaffin granules.J. Membrane Biol. 20:1

    Google Scholar 

  14. Sillén, L.G., Martell, A.E. 1964. Stability Constants. The Chemical Society, London

    Google Scholar 

  15. Stein, W.D. 1967. The movement of molecules across cell membranes. Academic Press, New York

    Google Scholar 

  16. Tosteson, D.C. 1964. Regulation of cell volume by sodium and potassium transport.In: The Cellular Function of Membrane Transport. J.F. Hoffman, editor. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  17. Wilbrandt, W. 1941. Osmotische Natur sogenannter nicht-osmotischer Hämolysen. (Kolloidosmotische Hämolyse) I. Mitteilung.Pflueger's Arch. Gesamte Physiol. Menschen. Tiere.245:22

    Google Scholar 

  18. Zimmermann, U. 1973. Deutsches Patentamt Auslegeschrift 2326161 vom 23.5.1973

  19. Zimmermann, U. 1973. Transportprozesse durch Biomembranen. Jahresbericht 1973 der Kernforschungsanlage Jülich GmbH, p. 55. Nuclear Research Center, Jülich

    Google Scholar 

  20. Zimmermann, U., Pilwat, G., Beckers, F., Riemann, F. 1976. Effects of external electrical fields on cell membranes.Bioelectrochem. Bioen. 3:58

    Google Scholar 

  21. Zimmermann, U., Pilwat, G., Riemann, F. 1974. Dielectric breakdown of cell membranes.Biophys. J. 14:881

    Google Scholar 

  22. Zimmermann, U., Pilwat, G., Riemann, F. 1974. Dielectric breakdown of cell membranes.In: Membrane Transport in Plants. U. Zimmermann and J. Dainty, editors. p. 146. Springer-Verlag, Heidelberg

    Google Scholar 

  23. Zimmermann, U., Pilwat, G., Riemann, F. 1974. Deutsches Patentamt, Auslegeschrift 2405119 vom 2.2.1974

  24. Zimmermann, U., Pilwat, G., Riemann, F. 1974. Reversibler dielektrischer Durchbruch von Zellmembranen in elektrostatischen Feldern.Z. Naturforsch. 29c:304

    Google Scholar 

  25. Zimmermann, U., Pilwat, G., Riemann, F. 1975. Preparation of erythrocyte ghosts by dielectric breakdown of the cell membrane.Biochim. Biophys. Acta 375:209

    Google Scholar 

  26. Zimmermann, U., Riemann, F., Pilwat, G. 1976. Enzyme loading of electrically homogeneous human red cell ghosts prepared by dielectric breakdown.Biochim. Biophys. Acta 436:460

    Google Scholar 

  27. Zimmermann, U., Schulz, J., Pilwat, G. 1973. Transcellular ion flow inEschericha coli B and electrical sizing of bacteria.Biophys. J. 13:1005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, U., Pilwat, G., Holzapfel, C. et al. Electrical hemolysis of human and bovine red blood cells. J. Membrain Biol. 30, 135–152 (1976). https://doi.org/10.1007/BF01869664

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869664

Keywords

Navigation