Skip to main content
Log in

Interaction of phospholipids (Lysophosphatidylethanolamines) with water and sodium cation

Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We have performed detailed ab initio SCF calculations on the intermolecular interaction energies for one Na+ ion and one water molecule with two molecular fragments, one exemplifying a phospholipid (PL) head (PLHD) and the other, a phospholipid tail (PLTL). A 6-12-1 atom-atom pair potential for the interaction of a Na+ ion and water with a lysophosphatidyl-ethanolamine (LPEA) was derived from these results by a fitting procedure. This fitted potential was used to obtain isoenergy maps that provide energy profiles of the Na+ ion and the water around the phospholipids. The interaction of the Na+ ion with PL, as well as the interaction of water with the PL, can be visualized from these maps, which, as expected, show regions of hydrophilicity and hydrophobicity for the water and indicate a very strong binding site for the Na+ ion on the phosphate. It appears to be a stationary site that would limit the Na+ ion mobility. This binding site is located near the double-bonded oxygen atom of the phosphate group; its binding energy for Na+ is 67 kcal/mol. On the other hand the NH+ group of PLHD ahows strong electrostatic repulsion of Na+ while interacting with water with a binding energy of 13 kcal/mol. This potential energy well region for water is separated from another of similar depth near the phosphate by a barrier and both regions are expected to act as binding sites for water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barker, J. A.; Watts, R. O. 1969.Chem. Phys. Lett. 3, 144.

    Google Scholar 

  • Boys, S. F.; Bernardi F. 1978.Mol. Phys. 19, 553.

    Google Scholar 

  • Clementi, E. 1980.Computational Aspects for Large Molecular Systems. Lecture Notes in Chemistry, Vol. 19, pp. 1–184.

    Google Scholar 

  • Clementi, E. 1983. InStructure and Dynamics: Nucleic Acids and Proteins, (E. Clementi and R. H. Sarma, Eds.), Adenine Press: N. Y.

    Google Scholar 

  • Clementi, E.; Cavallone, F.; Scordamaglia, R. 1977.J. Am. Chem. Soc. 99, 5531.

    Google Scholar 

  • Clementi, E.; Corongiu, G. 1982.Biopolymers 21, 763; and two earlier papers by the same authors, cited there.

    Google Scholar 

  • Clementi, E.; Corongiu, G.; Ranghino, G. 1981.J. Chem. Phys. 74, 578; this paper gives references to a series of papers by Clementi et al. (I–VI) on analytical ab initio interaction potentials.

    Google Scholar 

  • Fornili, S. L.; Vercauteren, D. P.; Welti, M.; Fornili, S. F.; Clementi, E. 1984.Biochim. Biophys. Acta 771, 151.

    Google Scholar 

  • Gianolio, L.; Pavani, R.; Clementi, E. 1978.Gazz. Chim. Ital. 108, 181.

    Google Scholar 

  • Hauser, H.; Pascher, I.; Pearson, R. H.; Sundell, S. 1981.Biochim. Biophys. Acta 650, 21.

    Google Scholar 

  • Johansson, A.; Kollman, P.; Rothenberg, S. 1973.Theor. Chim. Acta 29, 167.

    Google Scholar 

  • Kim, K. S.; Clementi, E. 1984a.IBM Technical Report POK-36.

  • Kim, K. S.; Clementi, E. 1984b.J. Am. Chem. Soc. in press.

  • Kim, K. S.; Clementi, E. 1984c.J. Am. Chem. Soc. submitted.

  • Kim, K. S.; Corongiu, G.; Clementi, E. 1983.J. Biomol. Struct. Dyn. 1, 263.

    Google Scholar 

  • Kim, K. S.; Vercauteren, D. P.; Welti, M.; Chin, S.; Clementi, E. 1984.Biophys. J. (submitted).

  • Kim, K. S.; Vercauteren, D. P.; Welti, M.; Fornili, S. L.; Clementi, E. 1984.Biochim. Biophys. Acta (submitted).

  • Kolos, W. 1979.Theor. Chim. Acta 51, 219.

    Google Scholar 

  • MacDonald, R. I. 1980.Biochemistry 19, 1916.

    Google Scholar 

  • Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. 1953.J. Chem. Phys. 31, 1087.

    Google Scholar 

  • Mezei, M.; Beveridge, D. L.; Berman, H. A.; Goodfellow, J. M.; Finney, J. L.; Neidle, S. 1983.J. Biomol. Struct. Dyn. 1, 267.

    Google Scholar 

  • Mittal, K. L. (Ed.), 1978.Micellization, Solubilization, and Microemulsions: Plenum Press: New York: Vol 1, 2.

    Google Scholar 

  • Mulliken, R. S. 1955.J. Chem. Phys. 23, 1833.

    Google Scholar 

  • Nagle, J. F. 1980.Ann. Rev. Phys. Chem. 31, 157; a representative review on the lipid bilayer phase transition.

    Google Scholar 

  • Pascher, I.; Sundell, S.; Hauser, H. 1981.J. Mol. Biol. 153, 807.

    Google Scholar 

  • Ragazzi, M.; Ferro, D. R.; Clementi, E. 1979.J. Chem. Phys. 70, 1040.

    Google Scholar 

  • Schick, M. J., Jr. (Ed.). 1967.Nonfonic Surfactants: Marcel Dekker: New York.

    Google Scholar 

  • Tanford, C. 1980.Hydrophobic Effects: Formation of Micelles and Biological Membranes, 2nd ed.; Wiley: New York.

    Google Scholar 

  • Venkatachalam, C. M.; Urry, D. W. 1983.J. Comput. Chem. 7, 461.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swaminathan, P.K., Vercauteren, D.P., Kim, K.S. et al. Interaction of phospholipids (Lysophosphatidylethanolamines) with water and sodium cation. J Biol Phys 14, 49–56 (1986). https://doi.org/10.1007/BF01858693

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01858693

Keywords

Navigation