Skip to main content
Log in

Proton chemical shift imaging, metabolic maps, and single voxel spectroscopy of glial brain tumors

Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Seventeen patients with presumed glial brain tumors were examined with proton chemical shift imaging and single voxel spectroscopy that used different echo times. Metabolite resonances were evaluated by metabolic ratios and absolutely by correcting for coil load and comparison to phantom measurements. Metabolic images were created to visualize the metabolic changes. All patients showed spectra that were different from those measured in healthy control subjects. Spectral changes were also present in normal-appearing matter (NAM) that was distant from lesions. The resonance at 3.55 ppm which is usually assigned to bothmyo-inositol and glycine, was the only one to allow a discrimination between healthy volunteers, astrocytoma grade II, and glioblastoma multiforme (GBM) (p<0.02). From the different echo times used we conclude that an increase inhis resonance has to be assigned to glycine rather thanmyo-inositol. This resonance might be used to grade human gliomas more reliably. Total creatine (Cr) decreased more drastically with malignancy than N-acetylated metabolites (NA). This led to a higher NA/Cr ratio in GBM compared to astrocytoma grade II. NA/Cr was thus pseudonormal in GBM due to a change in both nominator and denominator. This study reveals the importance of comparing magnetic resonance spectroscopy data of lesions to spectra measured in identical localizations in healthy control subjects instead of NAM and the importance of quantifying single metabolic peaks instead of creating metabolic ratios in clinical magnetic resonance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Brown TR, Kincaid BM, Ugurbil K (1982) NMR chemical shift imaging in three dimensions.Proc Natl Acad Sci USA 79 3523–3526.

    PubMed  Google Scholar 

  2. Maudsley AA, Hilal SK, Perman WH, Simon HE (1983) Spatially resolved high resolution spectroscopy by “four-dimensional” NMR.J Magn Reson 51 147–152.

    Google Scholar 

  3. Negendank W (1992) Studies of human tumors by MRS: a review.NMR Biomed 5 303–324.

    PubMed  Google Scholar 

  4. Luyten PR, Marien AJH, Heindel W, Van Gerwen PHJ, Herholz K, den Hollander JA, Friedmann G, Heiss WD (1990) Metabolic imaging of patients with intracranial tumors: H-l MR spectroscopic imaging and PET.Radiology 176 791–799.

    PubMed  Google Scholar 

  5. Fulham MJ, Bizzi A, Dietz MJ, Shih HHL, Raman R, Somering GS, Frank JA, Dwyer AJ, Alger JR, Di Chiro G (1992) Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance.Radiology 185 675–686.

    PubMed  Google Scholar 

  6. Posse S, Schuknecht B, Smith ME, van Zijl PCM, Herschkowitz N, Moonen CTW (1993) Short echo time proton MR spectroscopic imaging.J Comput Assist Tomogr 17 1–14.

    PubMed  Google Scholar 

  7. Negendank W, Zimmerman R, Gotsis E, Falini A, Vogl T, Moser E, Evelhoch J, Spraggins T, Terway B, Lee B, Kamada K, Sauter R (1993) A cooperative group study of 1H MRS of primary brain tumors.Proceedings of the 12th Annual Meeting of the Society of Magnetic Resonance in Medicine, p. 1521.

  8. Granot J (1986) Selected volume excitation using stimulated echoes (VEST): applications to spatially localized spectroscopy and imaging.J Magn Reson 70.0 488–92.

    Google Scholar 

  9. Kimmich R, Hoepfel D (1987) Volume-selective multipulse spin-echo spectroscopy.J Magn Reson 72 379–384.

    Google Scholar 

  10. Frahm J, Merboldt KD, Hänicke W (1987) Localized proton spectroscopy using stimulated echoes.J Magn Reson 72 502–508; German patent P34 45 689.9 (1984) Dec 14.

    Google Scholar 

  11. Roser W, Mader I, Delias S, Freitag P, Hagberg G, Radü EW, Steinbrich W, Seelig J (1994) Proton CSI and metabolic maps of glial tumors.Proceedings of the 2nd Meeting of the Society of Magnetic Resonance, p. 134.

  12. Roser W, Mader I, Radü EW, Steinbrich W (1995) Clinical1H MRS: Glycine as Marker for the Malignancy of Human Glioma?Proceedings of the 3rd Meeting of the Society of Magnetic Resonance, p. 1720.

  13. Kleihues P, Burger PC, Scheithauer BW (1993) The New WHO classification of brain tumours.Brain Pathol 3 255–268.

    PubMed  Google Scholar 

  14. Hennig J, Nauerth A, Friedburg H (1986) RARE imaging, a fast imaging method for clinical MR.Magn Reson Med 3 823–833.

    PubMed  Google Scholar 

  15. Ordidge RJ, Bendall MR, Gordon RE, Connelly A (1985) Volume selection for in-vivo spectroscopy. In:Magnetic Resonance in Biology and Medicine (Govil G, Khetrapal CL, Saran A, eds.) pp. 387–397. New Dehli: Tata-McGraw-Hill.

    Google Scholar 

  16. Bottomley PA, inventor; US patent 4,480, 228,1984.

  17. Haase A, Frahm J, Hänicke W, Matthaei D (1985)1H NMR chemical shift selective (CHESS) imaging.Phys Med Biol 30 341–344.

    PubMed  Google Scholar 

  18. Klose U (1990) In vivo proton spectroscopy in presence of eddy currents.Magn Reson Med 14 26–30.

    PubMed  Google Scholar 

  19. Moonen CTW; van Zijl PCM (1990) Highly effective water suppression for in vivo proton NMR spectroscopy (DRYSTEAM).J Magn Reson 88 28–41.

    Google Scholar 

  20. Michaelis T, Merboldt KD, Bruhn H, Hänicke W, Frahm J (1993) Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra.Radiology 187 219–227.

    PubMed  Google Scholar 

  21. Danielsen ER, Michaelis T, Ross BD (1994) Towards automation in quantitative clinical proton MRS.Proceedings of the 2nd Meeting of the Society of Magnetic Resonance, p. 48.

  22. Hagberg G, Seelig J (1993) Localized proton spectroscopy of the human brain: comparison of different methods for absolute quantification.Proceedings of the 12th Annual Meeting of the Society of Magnetic Resonance in Medicine, p. 979.

  23. Danielsen ER, Michaelis T, Ross BD (1995) Three methods of calibration in quantitative proton MR spectros-copy.J Magn Reson B 106 287–291.

    PubMed  Google Scholar 

  24. Kauppinen RA, Williams SR, Busza AL, van Bruggen N (1993) Applications of magnetic resonance spectroscopy and diffusion-weighted imaging to the study of brain biochemistry and pathology.TINS 16 88–95.

    PubMed  Google Scholar 

  25. Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hänicke W, Sauter R (1989) Localized Proton NMR spectroscopy in different regions of the human brainin vivo: relaxation times and concentrations of cerebral metabolites.Magn Reson Med 11 47–63.

    Google Scholar 

  26. Kinoshita Y, Kajiwara H, Yokota A, Koga Y (1993) Proton magnetic resonance spectroscopy of astrocytic tumours: an in vitro study.Neurol Med Chir Tokyo 33 350–359.

    PubMed  Google Scholar 

  27. Kinoshita Y, Kajiwara H, Yokota A, Koga Y (1994) Proton magnetic resonance spectroscopy of brain tumors: an in vitro study.Neurosurg 35 606–613.

    Google Scholar 

  28. Peeling J, Sutherland G (1992) High-resolution1 H NMR spectroscopy studies of extracts of human cerebral neoplasms.Magn Reson Med 24 123–136.

    PubMed  Google Scholar 

  29. Kotitschke K, Felber S, Aichner F, Haase A, Bogdahn U (1994) Inositol: a possible marker for tumor dignity in1H MRS of human brain tumors?Proceedings of the 2nd Meeting of the Society of Magnetic Resonance, p. 1327.

  30. Gyngell ML, Hoehn-Berlage M, Kloiber O, Michaelis T, Ernestus RI, Hörstermann D, Frahm J (1992) Localized proton NMR spectroscopy of experimental gliomas in rat brainin vivo.NMR Biomed 5 335–340.

    PubMed  Google Scholar 

  31. Gyngell ML, Els T, Hoehn-Berlage M, Hossmann KA (1994) Proton MR spectroscopy of experimental brain tumors in vivo.Acta Neurochir 60: (Suppl 350–352.

    Google Scholar 

  32. Vogl TJ, Soellner O, Felix R (1994) Localized1H-MR-spectroscopy for non-invasive differentiation of cerebral tumors.Proceedings of the 2nd Meeting of the Society of Magnetic Resonance, p. 1305.

  33. Kuesel AC, Sutherland GR, Halliday W, Smith IAC (1994)1H MRS of high grade astrocytomas: mobile lipid accumulation in necrotic tissue.NMR Biomed 7 149–155.

    PubMed  Google Scholar 

  34. Walker P, Fayolle H, Baudouin N, Bernard D, Franconi JM, Giroud M, Binnert D, Brunotte F, Dumas R (1994) brain metabolite asymmetry as observed by localised1H magnetic resonance spectroscopy: a prospective study of the inner temporal lobe region in healthy subjects.Proceedings of the 2nd Meeting of the Society of Magnetic Resonance, p. 400.

  35. Tedeschi G, Bertolino A, Righini A, Jacob PK, Duyn JH, Moonen CTW, Alger JR, Di Chiro G (1994) Regional pattern recognition in proton MR spectroscopic images of normal human brain.Proceedings of the 2nd Meeting of the Society of Magnetic Resonance, p. 564.

  36. Steen RG, Gronemeyer SA, Kingsley PB, Reddick WE, Langston JS, Taylor JS (1994) Precise and accurate measurement of proton Tl in human brain in vivo: validation and preliminary clinical application.J Magn Reson Imaging 4 681–691.

    PubMed  Google Scholar 

  37. Lopez-Villegas D, Lenkinski RE, Wehrli SL, Ho WZ, Douglas SD (1995) Lactate production by human monocytes/macrophages determined by proton MR spectros-copy.Magn Reson Med 34 32–38.

    PubMed  Google Scholar 

  38. Husted CA, Duijn JH, Matson GB, Maudsley AA, Weiner MW (1994) Molar quantitation ofin vivo proton metabolites in human brain with 3D magnetic resonance spectroscopic imaging.Magn Reson Imaging 12 661–667.

    PubMed  Google Scholar 

  39. Alger JR, Symko DC, Bizzi A, Posse S, DesPres DJ, Armstrong MR (1993) Absolute quantitation of short TE brain1H MR spectra and spectroscopic imaging data.J Comput Assist Tomogr 17 191–199.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mader, I., Roser, W., Hagberg, G. et al. Proton chemical shift imaging, metabolic maps, and single voxel spectroscopy of glial brain tumors. MAGMA 4, 139–150 (1996). https://doi.org/10.1007/BF01772521

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01772521

Keywords

Navigation