Skip to main content
Log in

Open reading frames in a 4556 nucleotide sequence within MDV-1 BamHI-D DNA fragment: Evidence for splicing of mRNA from a new viral glycoprotein gene

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

A DNA segment of the MDV-1 BamHI-D fragment was sequenced, and the open reading frames (ORFs) present in the 4556 nucleotide fragment were analyzed by computer programs. Computer analysis identified 19 putative ORFs in the sequence ranging from a coding capacity of 37 amino acids (aa) (ORF-1a) to 684aa (ORF-1). The special properties of four ORFs (1a, 1, 2, and 3) were investigated. Two adjacent ORFs, ORF-1a and ORF-1, were found by computer analysis to have the properties of two introns encoding a glycoprotein: ORF-1a encodes an aa sequence with the properties of a signal peptide, and ORF-1 encodes a polypeptide with a membrane anchor domain and putative N-glycosylation sites in the aa sequence. ORF-1a and ORF-1 were found to be transcribed in MDV-1-infected cells. Two RNA transcripts were detected: a precursor RNA and its spliced form. Both are transcribed from a promoter located 5′ to ORF-1a, and splice donor and acceptor sites are used to splice the mRNA after cleavage of a 71-nucleotide sequence. This finding suggests that ORF-1a and ORF-1 are two introns of a new MDV-1 glycoprotein gene. The DNA sequence containing ORF-1 was transiently expressed in COS-1 cells, and the viral protein produced in these cells was found to react with anti-MDV serotype-1 Antigen B-specific monoclonal antibodies. These studies indicate that the protein encoded by ORF-1 has antigenic properties resembling Antigen B of MDV-1. A gene homologous to ORF-1 was detected in the genome of both MDV-2(SB1) and MDV-3(HVT), which serve as commercial vaccine strains. Two additional ORFs were noted in the 4556 nucleotide sequence: ORF-2, which encodes a 333 aa polypeptide initiating in the UL and terminating in the TRL prior to the putative origin of replication, and ORF-3, which encodes a 155 aa polypeptide that is partly homologous to the phosphoprotein pp38 encoded by the BamHI-H sequence. The 65 N-terminal aa of the two gene products are identical, both being derived from the nucleotide sequences in the TRL and IRL, respectively. Additional homologous aa sequences are the hydrophobic aa domain in the middle of both proteins. The functions of ORF-2, ORF-3, and additional ORFs are under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee L.F., Kieff E.D., Bachenheimer S.L., Roizman B., Spear P.G., Burmester B.R., and Nazerian K., J Virol7 289–294, 1971.

    Google Scholar 

  2. Kaaden O.R., Scholz A., Ben-Zeev A., and Becker Y., Arch Virol54 75–83, 1977.

    Google Scholar 

  3. Fukuchi K., Sudo M., Lee Y., Tanaka A., and Nonoyama M., J Virol51 102–109, 1984.

    Google Scholar 

  4. Buckmaster A.E., Scott S.D., Sanderson M.J., Boursnell M.E.G., Ross N.L.J., and Binns M.M., J Gen Virol69 2033–2042, 1988.

    Google Scholar 

  5. Ross L.J.N., Sanderson M., Scott S.D., Binns M.M., Doel T., and Milne B., J Gen Virol70 1789–1804, 1989.

    Google Scholar 

  6. Bradley G., Hayashi M., Lancz G., Tanaka A., and Nonoyama M., J Virol63 2534–2542, 1989.

    Google Scholar 

  7. Fukuchi K., Tanaka A., Schierman L.W., Witter R.L., and Nonoyama M., Proc Natl Acad Sci USA82 751–754, 1985.

    Google Scholar 

  8. Maotani K., Kanamori A., Ikuta K., Ueda S., Kato S., and Hirai K., J Virol58 657–660, 1986.

    Google Scholar 

  9. Silva R.F. and Witter R.L., J Virol54 690–696, 1985.

    Google Scholar 

  10. Cui Z., Lee L.F., Liu J-L., and Kung H-J., J Virol65 6509–6515, 1991.

    Google Scholar 

  11. Cui Z., Yan D., and Lee L.F., Virus Genes3 309–322, 1990.

    Google Scholar 

  12. Chubb R.C. and Churchill A.E., Vet Rec83 4–7, 1968.

    Google Scholar 

  13. Isfort R.J., Kung H.-J., and Velicer L.F., J Virol61 2614–2620, 1987.

    Google Scholar 

  14. Ihara T., Kato A., Ueda S., Ishihama A., and Hirai K., Virus Genes3 127–140, 1989.

    Google Scholar 

  15. Coussens P.M. and Velicer L.F., J Virol62 2373–2379, 1988.

    Google Scholar 

  16. Coussens P.M., Wilson M.R., Camp H., Roehl H., Isfort R.J., and Velicer L.F., Virus Genes3 291–307, 1990.

    Google Scholar 

  17. Silva R.F. and Lee L.F., Virology136 307–320, 1984.

    Google Scholar 

  18. Davidson I., Becker Y., and Malkinson M., Arch Virol121 125–139, 1991.

    Google Scholar 

  19. Hirai K., Nakajima K., Ikuta K., Kirisawa R., Kawakami S., Mikami T., and Kato S., Arch Virol89 113–130, 1986.

    Google Scholar 

  20. Sithole I., Coussens P.M., Lee L.F., and Velicer L.F., inAdvances in Marek's Disease Research. Proceedings of the 3rd International Symposium on Marek's Disease, Osaka, Japan, 1988, pp. 148–155.

  21. Yanagida N., Ogawa R., Li Y., Lee L.F., and Nazarian K., J Virol66 1402–1408, 1992.

    Google Scholar 

  22. Nazerian K., Lee L.F., Yanagida N., and Ogawa R., J Virol66 1409–1413, 1992.

    Google Scholar 

  23. Maray T., Ph.D. thesis, Hebrew University of Jerusalem, September 1989, submitted.

  24. Moyal M., Asher Y., Darai H., Rosen-Wolff A., Vafai A., and Becker Y., Virus Genes5 133–146, 1991.

    Google Scholar 

  25. Davidson I., Malkinson M., and Becker Y., Virus Genes2 5–18, 1988.

    Google Scholar 

  26. Becker Y., Asher Y., Tabor E., Davidson I., Malkinson M., and Weisman Y., J Virol Methods40 307–321, 1992.

    Google Scholar 

  27. Witter R.L., Avian Dis31 752–765, 1987.

    Google Scholar 

  28. Becker Y., Asher Y., Tabor E., Davidson I., Malkinson M., and Witter R.L., Virus Genes7 277–287, 1993.

    Google Scholar 

  29. Sanger F., Nicklen S., and Coulson A.R., Proc Natl Acad Sci USA74 5463–5467, 1977.

    Google Scholar 

  30. Chirgwin J.M., Przybyla A.E., MacDonald R.J., and Rutter W.J., Biochemistry18 5294–5299, 1979.

    Google Scholar 

  31. Ben-Hur T., Moyal M., Rosen-Wolff A., Darai G., and Becker Y., Virology169 1–8, 1989.

    Google Scholar 

  32. Morgan R.W., Cantello J.L., and McDermott C.H., Avian Dis34 345–351, 1990.

    Google Scholar 

  33. Devereux J., Haeberli P., and Smithies O., Nucleic Acids Res12 387–395, 1984.

    Google Scholar 

  34. Wolf H., Modrow S., Motz M., Jameson B.A., Hermann G., and Fortsch B., CABIOS4 187–191, 1988.

    Google Scholar 

  35. Ross L.J.N., Binns M.M., Sanderson M., and Schat K.A., Virus Genes7 33–51, 1993.

    Google Scholar 

  36. Becker Y., Virus Genes5 287–312, 1991.

    Google Scholar 

  37. Malkinson, M., Davidson, I., and Becker Y., Arch Virol127 169–184, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, Y., Asher, Y., Tabor, E. et al. Open reading frames in a 4556 nucleotide sequence within MDV-1 BamHI-D DNA fragment: Evidence for splicing of mRNA from a new viral glycoprotein gene. Virus Genes 8, 55–69 (1994). https://doi.org/10.1007/BF01703602

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01703602

Key words

Navigation