Skip to main content
Log in

Structure of the algebras of some free systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a detailed analysis of the structure of some Von Neumann algebras which describe free relativistic fields or infinite systems of free particles with finite density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki, H., andE. Woods: Representations of the C.C.R. for a nonrelativistic infinite free Bose gas. J. Math. Phys.4, 637–662 (1963).

    Google Scholar 

  2. ——, andW. Wyss: Representations of canonical anticommutation relation. Helv. Phys. Acta37, 136–159 (1964).

    Google Scholar 

  3. —— Von Neumann algebras of local observables for the free scalar field. J. Math. Phys.1, 1–13 (1964).

    Google Scholar 

  4. —— Type of Von Neumann algebras associated to the free scalar field. Progr. Theoret. Phys.32, 956–961 (1964).

    Google Scholar 

  5. Diximier, J.: Les algèbres d'operateurs dans l'espace Hilbertien. Paris: Gauthier-Villars 1957.

    Google Scholar 

  6. Segal, I.: Mathematical problems of relativistic physics. Am. Math. Soc. Publications, Providence (1963).

    Google Scholar 

  7. Guichardet, M. A.: Produits tensoriels infinis. Ann. Ecole Norm. Super.83, 1–15 (1966).

    Google Scholar 

  8. Von Neumann, J.: Charakterisierung des Spektrums eines Integral Operators. Actualités Scient. et Ind. No. 229 (1935).

  9. —— On infinite direct products. Comp. Math.6, 1–77 (1938).

    Google Scholar 

  10. —— Rings of operators III. Ann. Math.41, 94–162 (1940).

    Google Scholar 

  11. Bures, D.: Certain factors constructed as infinite tensor products. Com. Math.15, 169–191 (1963).

    Google Scholar 

  12. Powers, R.: Representation of uniformly hyperfinite algebras. (To be published).

  13. Segal, I.: A class of operator algebras which are determined by groups. Duke Math. Journal18, 221–265 (1951).

    Google Scholar 

  14. Störmer, E.: Types of invariant algebras associated with extremal invariant states. (To be published.)

  15. Doplicher, S., D. Kastler, andD. Robinson: Covariance algebras. Commun. Math. Phys.3, 1–28 (1966).

    Google Scholar 

  16. Jost, R.: General theory of quantized fields. Am. Math. Soc. Publications, Providence (1966).

    Google Scholar 

  17. Segal, I., andR. Goodman: Anti-locality of certain invariant operators. J. Math. Mech.14, 629–638 (1965).

    Google Scholar 

  18. Dunford, N., andJ. Schwartz: Linear operator, part II. XII, 7, 7. New York: Interscience Publishers 1958.

    Google Scholar 

  19. Schweber, S.: Relativistic quantum field theory. Evanston: Row Peterson & Co. 1961.

    Google Scholar 

  20. Newton, R., andE. Wigner: Localized states of elementary systems. Rev. Mod. Phys.21, 400–406 (1949).

    Google Scholar 

  21. Kadison, R.: Types of Von Neumann algebras in quantum field theory. J. Math. Phys.4, 1511–1517 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dell'Antonio, G.F. Structure of the algebras of some free systems. Commun.Math. Phys. 9, 81–117 (1968). https://doi.org/10.1007/BF01645837

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01645837

Keywords