Abstract
We give a detailed analysis of the structure of some Von Neumann algebras which describe free relativistic fields or infinite systems of free particles with finite density.
Similar content being viewed by others
References
Araki, H., andE. Woods: Representations of the C.C.R. for a nonrelativistic infinite free Bose gas. J. Math. Phys.4, 637–662 (1963).
——, andW. Wyss: Representations of canonical anticommutation relation. Helv. Phys. Acta37, 136–159 (1964).
—— Von Neumann algebras of local observables for the free scalar field. J. Math. Phys.1, 1–13 (1964).
—— Type of Von Neumann algebras associated to the free scalar field. Progr. Theoret. Phys.32, 956–961 (1964).
Diximier, J.: Les algèbres d'operateurs dans l'espace Hilbertien. Paris: Gauthier-Villars 1957.
Segal, I.: Mathematical problems of relativistic physics. Am. Math. Soc. Publications, Providence (1963).
Guichardet, M. A.: Produits tensoriels infinis. Ann. Ecole Norm. Super.83, 1–15 (1966).
Von Neumann, J.: Charakterisierung des Spektrums eines Integral Operators. Actualités Scient. et Ind. No. 229 (1935).
—— On infinite direct products. Comp. Math.6, 1–77 (1938).
—— Rings of operators III. Ann. Math.41, 94–162 (1940).
Bures, D.: Certain factors constructed as infinite tensor products. Com. Math.15, 169–191 (1963).
Powers, R.: Representation of uniformly hyperfinite algebras. (To be published).
Segal, I.: A class of operator algebras which are determined by groups. Duke Math. Journal18, 221–265 (1951).
Störmer, E.: Types of invariant algebras associated with extremal invariant states. (To be published.)
Doplicher, S., D. Kastler, andD. Robinson: Covariance algebras. Commun. Math. Phys.3, 1–28 (1966).
Jost, R.: General theory of quantized fields. Am. Math. Soc. Publications, Providence (1966).
Segal, I., andR. Goodman: Anti-locality of certain invariant operators. J. Math. Mech.14, 629–638 (1965).
Dunford, N., andJ. Schwartz: Linear operator, part II. XII, 7, 7. New York: Interscience Publishers 1958.
Schweber, S.: Relativistic quantum field theory. Evanston: Row Peterson & Co. 1961.
Newton, R., andE. Wigner: Localized states of elementary systems. Rev. Mod. Phys.21, 400–406 (1949).
Kadison, R.: Types of Von Neumann algebras in quantum field theory. J. Math. Phys.4, 1511–1517 (1963).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Dell'Antonio, G.F. Structure of the algebras of some free systems. Commun.Math. Phys. 9, 81–117 (1968). https://doi.org/10.1007/BF01645837
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01645837