Skip to main content
Log in

Effect of ovariectomy on bone histology and plasma parameters of bone metabolism in nulliparous and multiparous sows

Einfluß der Ovariektomie auf Knochenhistologie und Plasmaparameter des Knochenstoffwechsels bei nulliparen und multiparen Sauen

  • Original Contribution
  • Published:
Zeitschrift für Ernährungswissenschaft Aims and scope Submit manuscript

Summary

To investigate the suitability of the pig as animal model for postmenopausal osteoprosis, effects of ovariectomy (OVX) on bone metabolism and histology were studied in two groups of sows (9 months, nulliparous or 35 months, multiparous). A standard diet of about 1.5 % calcium (Ca) was fed till sacrifice at either 12 or 20 months post OVX when mineral content and histology were studied in representative bone specimens of proximal tibia, iliac crest and lumbar vertebrae. At 4, 8, 12, and 18 months post OVX, total and bone-specific alkaline phosphatase (APt, APb) calcidiol, calcitriol and parathyroid hormone (PTH) were measured in plasma.

In young sows OVX did not significantly affect plasma variables except for calcitriol, which was higher at 4 months post OVX. No significant differences between OVX or control animals were observed in the variables of bone chemical and histological analyses, neither 12 nor 20 months post OVX.

In multiparous sows OVX significantly increased PTH plasma concentrations at 8 months post OVX and plasma calcitriol, APt and APb at 12 months post OVX. All effects were moderate and transient. OVX did not significantly affect the variables of bone chemical and histological analyses neither 12 nor 20 months post OVX.

Although undoubtedly the clinical-chemical changes observed were not accompanied by any histomorphometric signs of osteopenia/osteoporosis, it must be left to future experiments as to whether this resulted from the ample calcium supply provided. This possibility is supported by recent observations showing that porcine osteopenia could be induced by OVX in animals maintained on only 0.75 % dietary calcium but not on higher (0.9 %) Ca regimens (33).

Zusammenfassung

In der vorliegenden Untersuchung sollte die Eignung des ovariektomierten Schweins als Modell für die postmenopausale Osteoporose beschrieben werden. Hierzu wurde der Einfluß der Ovariektomie (OVX) auf Plasmaparameter des Knochenstoffwechsels und auf knochenhistologische Parameter bei zwei Gruppen von Sauen (9 Monate alt, Nullipara oder 35 Monate alt, Multipara) untersucht. Eine Standarddiät für Schweine mit einem Calciumgehalt von 1,5 % wurde verabreicht. Gesamt-und knochenspezifische alkalische Phosphatase (APt, APb) Calcidiol, Calcitriol und Parathormon (PTH) wurden im Plasma 4, 8, 12 und 18 Monate nach OVX bestimmt. Der Mineralgehalt sowie histologische Parameter wurden in repräsentativen Knochenproben 12 Monate nach OVX und am Ende des Versuchs 18 Monate nach OVX gemessen.

Bei jungen Sauen führte die Ovariektomie zu keinen signifikanten Veränderungen der Plasmaparameter mit Ausnahme höherer Konzentrationen des Calcitriols 4 Monate nach OVX. Es wurden weder 12 noch 20 Monate nach OVX signifikante Unterschiede zwischen OVX- und Kontrolltieren in den Parametern der chemischen oder histologischen Knochenanalyse beobachtet.

Bei multiparen Sauen waren die Plasmakonzentrationen des PTH gegenüber den Kontrolltieren 8 Monate nach OVX signifikant erhöht. Die Konzentrationen des Calcitriols sowie die Aktivität der APt und APb lagen 12 Monate nach OVX signifikant über den Werten der intakten Tiere. Alle Effekte waren moderat. Weder 12 Monate noch 20 Monate nach OVX kam es zu signifikanten Veränderungen in den Parametern der chemischen oder histologischen Knochenanalyse.

Obwohl die beobachteten Veränderungen in den klinisch-chemischen Plasmaparametern zweifellos keine histomorphometrischen Anzeichen einer Osteopenie/Osteoporose zur Folge hatten, bleibt es zukünftigen Untersuchungen überlassen nachzuprüfen, ob das Ausbleiben des Osteopenie ein Ergebnis der in diesem Experiment hohen Calciumzufuhr war. Eine solche Möglichkeit sollte aufgrund der Beobachtung in Betracht gezogen werden, daß Osteopenie beim Schwein nach OVX eintritt, wenn eine Diät mit geringerer Calciumzufuhr (0,75 % im Vergleich zu 0,9 %) verabreicht wurde (33).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AP t :

total alkaline phosphatase

AP b :

bone specific alkaline phosphatase

BV/TV :

bone volume/tissue volume

CV :

coefficient of variation

OVX :

ovariectomy

PTH :

parathyroid hormone

RIA :

radioimmunoassay

TBPf :

trabecular bone pattern factor

25(OH)D 3 :

calcidiol

1,25 (OH) 2 D 3 :

calcitriol

References

  1. Aviolo LV (1981) The endocrinology of involutional osteoporosis. In: De Luca HF, Frost HM, Jel WSS, Johnston Jr CC, Parfitt AM (eds) Osteoporosis: Recent advances in pathogenesis and treatment. University Park Press, Baltimore, pp 343–351

    Google Scholar 

  2. Baker MR, McDonnell H, Peacock M, Nordin BEC (1979) Plasma 25-hydroxy vitamin D concentrations in patients with fractures of the femoral neck. Br Med J 1:589–591

    Article  CAS  Google Scholar 

  3. Barrett-Connor E (1991) Nutrition epidemiology: how do we know what they ate? Am J Clin Nutr 54:182S-187S

    CAS  Google Scholar 

  4. Benhamou CL, Tourliere D, Gauvain JB, Picaper G, Audran M, Jallet P (1995) Calciotropic hormones in elderly people with and without hip fracture. Osteoporosis Int 5:103–107

    Article  CAS  Google Scholar 

  5. Blanusa M, Matcovic V, Kostial K (1978) Kinetic parameters of calcium metabolism and femur morphometry in rats. Pflügers Arch 375:239–244

    Article  CAS  Google Scholar 

  6. Bustad LK, McClellan RO (1966) Swine in biomedical research. Proc Int Symp, Richland, Frayn Printing Corp, Seattle, USA

    Google Scholar 

  7. Cumming RG (1990) Calcium intake and bone mass: A quantitative review of the evidence. Calcif Tissue Int 47:194–201

    Article  CAS  Google Scholar 

  8. Dannucci GA, Martin RB, Patterson-Buckendahl P (1987) Ovariectomy and trabecular bone remodeling in the dog. Calcif Tissue Int 40:194–199

    Article  CAS  Google Scholar 

  9. Delmas PD (1988) Biochemical markers of bone turnover in osteoporosis. In: Riggs BL, Melton LJ III (eds) Osteoporosis, Etiology, Diagnosis and Management. Raven Press, New York, pp 297–316

    Google Scholar 

  10. Duncan WE, Glass AR, Wray HL (1991) Estrogen regulation of the nuclear 1,25-dihydroxyvitamin D3 receptor in rat liver and kidney. Endocrinology 129:2318–2324

    Article  CAS  Google Scholar 

  11. Elders PJM, Netelenbos JC, Lips P, v Ginkel FC, Khoe E, Leeuwenkamp OR, Hackeng WHL, van der Stelt PF (1991) Calcium supplementation reduces vertebral bone loss in perimenopausal women: A controlled trial in 248 women between 46 and 55 years of age. J Clin Endocrinol Metab 73:533–540

    Article  CAS  Google Scholar 

  12. Erben RG, Kohn B, Weiser H, Sinowatz F, Rambeck WA (1990) Role of vitamin D in the prevention of the osteopenia induced by ovariectomy in the axial and appendicular skeleton of the rat. Z Ernährungswiss 29:229–248

    Article  CAS  Google Scholar 

  13. Frost HM (1976) Some concepts crucial to the effective study of bone turnover and bone balance in human skeletal disease and in experimental models of skeletal physiology and pathophysiology. In: Jaworski ZFG (ed) Proc 1st workshop on bone morphometry. University of Ottawa Press, Ottawa, pp 219–223

    Google Scholar 

  14. Frost HM (1981) Mechanical microdamage, bone remodeling, and osteoporosis: a review. In: DeLuca HF, Frost HM, Jel WSS, Johnston Jr CC, Parfitt AM (eds) Osteoporosis: Recent advances in pathogenesis and treatment. University Park Press, Baltimore, pp 343–351

    Google Scholar 

  15. Frost HM, Jee WSS (1992) On the rat model of human osteopenias and osteoporosis. Bone and Mineral 18:227–236

    Article  CAS  Google Scholar 

  16. Gallagher JC, Riggs BL, Eisman J, Hamstra A, Arnaud SB, DeLuca HF (1979) Intestinal calcium absorption and serum Vitamin D metabolites in normal subjects and osteoporotic patients. Am J Clin Invest 64:729–736

    Article  CAS  Google Scholar 

  17. Gallagher JC, Riggs BL, Jerpbak CM, Arnaud CD (1980) The effect of age on serum immunoreactive parathyroid hormone in normal and osteoporotic women. J Lab Clin Med 95:373–385

    CAS  Google Scholar 

  18. Geusens P, Nijs J, Jiang Y, Caulin F, Auderercke van R, Perre van der G, Goovaerts S, Gielen J, Marchal G, Dequeker J (1990) Bone mass, density and strength in ovariectomized sheep treated with salmon calcitonin. In: Christiansen C, Overgaard K (eds) 3rd Symposium on Osteoporosis. Copenhagen 14–20 Oct, pp 1152–1153

  19. Hahn M, Vogel M, Pompesius-Kempa M, Delling G (1992) Trabecular bone pattern factor — a new parameter for simple quantification of bone microarchitecture. Bone 13:327–330

    Article  CAS  Google Scholar 

  20. Hansen IA, Overgaard K, Riis BJ, Christiansen C (1991) Potential risk factors for development of postmenopausal osteoporosis — examined over a 12-year period. Osteoporosis Int 1:95–102

    Article  CAS  Google Scholar 

  21. Haussler MR, McCain T (1977) Basic and clinical concepts related to vitamin D metabolism and action. N Engl J Med 297:974–983

    Article  CAS  Google Scholar 

  22. Hoffman S, Grisso JA, Kelsey JL, Gammon MD, O'Brien LA (1993) Parity, lactation and hip fracture. Osteoporosis Int 3:171–176

    Article  CAS  Google Scholar 

  23. Howard GA, Bottemiller BL, Turner RT, Rader JI, Baylink DJ (1981) Parathyroid hormone stimulates bone formation and resorption in organ culture: Evidence for a coupling mechanism. Proc Natl Acad Sci USA 78:3204–3208

    Article  CAS  Google Scholar 

  24. Jaeger W, Scholz-Ahrens KE, Barth CA, Delling G (1992) Der Einfluß verschiedener Calciumkonzentrationen in der Diät auf die Mineralstoffdichte des knöchernen Skeletts der Ratte. Ernährungs-Umschau 39:145

    Google Scholar 

  25. Kanis JA (1991) Calcium requirements for optimal skeletal health in women. Calcif Tissue Int (Suppl) 49:S33-S41

    Article  Google Scholar 

  26. Kragstrup J, Richards A, Fejerskov O (1989) Effects of fluoride on cortical bone remodeling in the growing domestic pig. Bone 10:421–424

    Article  CAS  Google Scholar 

  27. Lindsay R, Aitken JM, Anderson JB, Hart DM, MacDonald EB, Clarke AC (1976) Long-term prevention of postmenopausal osteoporosis by oestrogen. Lancet, pp 1038–1040

  28. Marie PJ, Travers R (1983) Continuous infusion of 1,25-Dihydroxyvitamin D3 stimulates bone turnover in the normal young mouse. Calcif Tissue Int 35:418–425

    Article  CAS  Google Scholar 

  29. Martin RB, Butcher RL, Sherwood LL, Buckendahl P, Boyd RD, Farris D, Sharkey N, Dannucci G (1987) Effects of ovariectomy in beagle dogs. Bone 8:23–31

    Article  CAS  Google Scholar 

  30. Meier O, Oldigs B, Hinsch W (1983) Der Einfluß endogener und exogener Faktoren auf die Aktivität von Serumenzymen. Zbl Vet Med A 30:26–39

    Article  Google Scholar 

  31. Melton LJ, Bryant SC, Wahner HW, O'Fallon WM, Malkasian GD, Judd HL, Riggs BL (1993) Influence of breastfeeding and other reproductive factors on bone mass later in life. Osteoporosis Int 3:76–83

    Article  Google Scholar 

  32. Miller LC, Weaver DS, McAlister JA, Koritnik DR (1986) Effects of ovariectomy on vertebral trabecular bone in the cynomolgus monkey (macaca fascicularis). Calcif Tissue Int 38:62–65

    Article  CAS  Google Scholar 

  33. Mosekilde L, Weisbrode SE, Safron JA, Stills HF, Jankowski ML, Ebert DC, Danielsen CC, Sogaard CH, Franks AF, Stevens ML, Paddock CL, Boyce RW (1993) Evaluation of the skeletal effects of combined mild dietary calcium restriction and ovariectomy in Sinclair S-1 minipigs: a pilot study. J Bone Miner Res 8:1311–1321

    Article  CAS  Google Scholar 

  34. Nordin BEC, Morris HA (1989) The calcium deficiency model for osteoporosis. Nutr Rev 47:65–72

    Article  CAS  Google Scholar 

  35. Petersen MM, Briggs RS, Ashby MA, Reid RI, Hall MR, Wood PJ, Clayton BE (1983) Parathyroid hormone and 25-hydroxyvitamin D concentrations in sick and normal elderly people. Br Med J 287:521–523

    Article  CAS  Google Scholar 

  36. Price PA, Williamson MK (1981) Effects of warfarin on bone. Studies on the vitamin K-dependent protein of rat bone. J Biol Chem 256:12754–12759

    CAS  Google Scholar 

  37. Prince RL, Dick IM, Price RI (1989) Plasma calcitonin levels are not lower than normal in osteoporotic women. J Clin Endocrin Metab 68:684–687

    Article  CAS  Google Scholar 

  38. Raisz LG, Trummel CL, Holick MF, DeLuca HF (1972) 1,25-Dihydroxycholecalciferol, a potent stimulator of bone resorption in tissue culture. Science 175:768–769

    Article  CAS  Google Scholar 

  39. Riggs BL, Melton LJ (1986) Involutional osteoporosis. N Engl J Med 314:1676–1686

    Article  CAS  Google Scholar 

  40. Schanler RJ, Abrams SA, Sheng HP (1991) Calcium and phosphorus deficiencies affect mineral distribution in neonatal miniature piglets. Am J Clin Nutr 54:420–424

    CAS  Google Scholar 

  41. Scharla S, Reichel H (1990) A sensitive radioimmunoassay for 1,25-Dihydroxyvitamin D3 (Calcitriol) after high performance liquid chromatography of plasma or serum extracts. In: Schmidt Gayck H, Armbruster FP, Bouillon R (eds) Calcium regulating hormones, vitamin D metabolites, and cyclic AMP. Springer Verlag, Berlin, pp 300–317

    Chapter  Google Scholar 

  42. Schulz A, Sommer E, Delling G (1973) The antagonistic effect of parathyroid hormone and estrogens on bone remodeling in ovariectomized rats. Acta Endocrinologica Suppl 173:166

    CAS  Google Scholar 

  43. Smith ML, Fogelman I, Hart DM, Scott E, Bevan J, Leggate I (1989) Effect of etidronate disodium on bone turnover following surgical menopause. Calcif Tissue Int 44:74–79

    Article  CAS  Google Scholar 

  44. Spencer GR (1979) Animal Model: Porcine lactational osteoporosis. Am J Pathol 95:277–280

    CAS  Google Scholar 

  45. Stepan JJ, Presl J, Broulik P, Pacovsky V (1987) Serum osteocalcin levels and bone alkaline phosphatase isoenzyme after ophorectomy and in primary hyperparathyroidism. J Clin Endocrinol Metab 64:1079–1082

    Article  CAS  Google Scholar 

  46. Teitelbaum SL, Rosenberg EM, Richardson CA, Avioli LV (1976) Histological studies of bone from normocalcemic postmenopausal osteoporotic patients with increased circulating parathyroid hormone. J Clin Endocrinol Metab 42:537–543

    Article  CAS  Google Scholar 

  47. van Haarlem LJM, Knapen MHJ, Hamulyak K, Vermeer C (1988) Circulating osteocalcin during oral anticoagulant therapy. Thromb Haemostas 60:79–82

    Google Scholar 

  48. Vernejoul de MC, Pointillart A, Bergot C, Bielakoff J, Morieux C, Laval Jeantet AM, Miravet L (1987) Different schedules of administration of (3 amino-a-hydroxypropylidene)-1,1 bisphosphonate induce different changes in pig bone remodeling. Calcif Tissue Int 40:160–165

    Article  Google Scholar 

  49. Wronski TJ, Dann LM, Horner SL (1989) Time course of vertebral osteopenia in ovariectomized rats. Bone 10:295–301

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz-Ahrens, K.E., Delling, G., Jungblut, P.W. et al. Effect of ovariectomy on bone histology and plasma parameters of bone metabolism in nulliparous and multiparous sows. Z Ernährungswiss 35, 13–21 (1996). https://doi.org/10.1007/BF01612023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01612023

Key words

Schlüsselwörter

Navigation