Skip to main content
Log in

Electrical-thermal coupled calculation of an asynchronous machine

Elektrisch-thermische Berechnung einer Asynchronmaschine

  • Published:
Archiv für Elektrotechnik Aims and scope Submit manuscript

Contents

The temperature field over the whole cross section of an asynchronous electric machine (windings, stator and rotor core, insulation, air gap) is calculated under both steady-state and transient conditions. Thermal sources (copper losses) depend on rotor slip, deep-bar effect and windings temperature. All these quantities are, in the transient condition, functions of time. The thermal part of this coupled electro-thermal process is solved by the finite element method (FEM), while the electromagnetic part is dealt with by the equivalent circuit of the asynchronous machine. The air-gap problem is specially treated. The presented method can be applied to other electric machines having negligible axial thermal heat flow.

Übersicht

In der vorliegenden Arbeit wird das Temperaturfeld über den ganzen Querschnitt einer Asynchronmaschine (Nutkupfer, Ständer- und Läuferblechpaket, Isolationen, Luftspalt) berechnet. Die Berechnung wird für stationäre und transiente Zustände durchgeführt. Die Wärmequellen (Kupferverluste) sind vom Schlupf, der Stromverdrängung und den Kupfertemperaturen abhängig. Alle diese Größen sind während der transienten Vorgänge zeitabhängig. Der thermische Teil dieses elektrisch-thermischen Prozesses wird mit Hilfe der FEM, der elektromagnetische Teil mit Hilfe des Ersatzbildes der Asynchronmaschine berechnet. Besonders wird das Problem des Luftspaltes behandelt. Die Methode kann bei allen Maschinenarten mit vernachlässigbaren axialen Wärmeströmen angewendet werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armor, A. F.; Chari, M. V. K.: Heat flow in the stator core of large turbine-generators, by the method of three-dimensional finite elements. Part I and II. IEEE transactions on PAS, PAS-95 (1976) 1648–1668

    Google Scholar 

  2. Armor, A. F.: Transient, three-dimensional, finite-element analysis of heat flow in turbine generator rotors. IEEE transactions on PAS, PAS-99 (1980) 934–947

    Google Scholar 

  3. Griffith, J. W. et al. Induction motor squirrel cage rotor winding thermal analysis. IEEE transactions on Energy Convercion, EC-1 (1986) 22–25

    Google Scholar 

  4. Ohishi, H., et al.: Analysis of temperature distribution in coilstrands of rotating electric machines with one turn coil. IEEE transactions on Energy Convercion, EC-2 (1987) 432–438

    Google Scholar 

  5. Siyambalapitiya, D. J. T. et al.: Transient thermal characteristics of induction machine rotor cage. IEEE transactions on Energy Convercion, EC-3 (1988) 849–854

    Google Scholar 

  6. Garg, V. K.; Raymond, J.: Magneto-thermal coupled analysis of canned induction motor. IEEE transactions on Energy Convercion, EC-5 (1990) 110–114

    Google Scholar 

  7. Gazley, C.: Heat transfer characteristics of the rotational and axial flow between concentric cylinders. Journal of heat transfer. Vol. 80 (1958) 79–90

    Google Scholar 

  8. Ball, K. S.; Farouk, B.; Dixit, V. C.: An experimental study of heat transfer in a vertical annulus with a rotating cylinder. Int. J. Heat Mass Transfer, Vol. 32 (1989) 1517–1527

    Google Scholar 

  9. Farouk, B. et al.: Laminar and turbulent natural convection in the annulus between horizontal concentric cylinders. J. Heat Transfer, Vol. 104 (1982) 631–636

    Google Scholar 

  10. Kreith, F.: Convection heat transfer in rotating systems. Advances in Heat Transfer, Vol. 5 (1968) 129–251

    Google Scholar 

  11. Becker, K. M.; Kaye, J.: Measurements of Diabatic flow in an annulus with an inner rotating cylinder. J. of Heat transfer, May (1962) 97–105

    Google Scholar 

  12. Rao, S. S.: The finite element method in engineering. New York, Pergamon Press

  13. Alger, P.: Induction machines. Gordon and Breach, Science Publishers

  14. Heiles, F.: Über die zweckmäßige Gestaltung und Anordnung von Kühlrippen. E+M (1952) H. 14, 323–331

  15. Incropera, F.; De Witt, D.: Fundamentals of heat and mass transfer. John Wiley & Sons, 1990

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatziathanassiou, V., Xypteras, J. & Archontoulakis, G. Electrical-thermal coupled calculation of an asynchronous machine. Archiv f. Elektrotechnik 77, 117–122 (1994). https://doi.org/10.1007/BF01578534

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01578534

Keywords

Navigation