Skip to main content
Log in

Energy efficiency of NO removal by pulsed corona discharges

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Pulsed positive corona discharges are used to remove NO from the flue gas of a methane burner. At low power input this leads to an increase in NO2, which shows that the process is oxidative. Removal efficiency is greatest when discharges are produced with high-voltage pulses, which are shorter in duration than the time required by the primary streamers to cross the discharge gap, in combination with a dc bias. Other important parameters are input power density and residence time. The best result obtained so far is an energy consumption of 20 eV per NO molecule removed, at 50% deNOx i.e., a removal of 150 ppm NOx, using a residence time of 15 s and an input power density, of 3.5 Wh/Nm3. [Wh/Nm3 stands for watt-hour per normal cubic meter, i.e., at normal conditions (273 K and 1 bar). This implies that 1 Nm3 contains 2.505 1025 molecules.] There appears to be room for improvement by the addition of gaseous and particulate chemicals or the use of multiple corona treatment. It is argued front comparison between results from models and experiments that the direct production of OH by the discharge is only the initiation of the cleaning process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Mätzing, “Chemical kinetics of flue gas cleaning by irradiation with electrons,” inAdvances in Chemical Physics, Vol. LXXX, ed. I. Prigogine, Wiley, New York (1991) pp. 315–359.

    Google Scholar 

  2. Y. L. M. Creyghton, “Pulsed positive corona discharges: fundamental study and application to flue gas treatment, Dissertation, Eindhoven University of Technology, September 1994.

  3. N. W. Frank,Radiat. Phys. Chem. 40, 267–272 (1992).

    Google Scholar 

  4. D. Braun, U. Kuchler, and G. Pietsch,J. Phys. D: Appl. Phys. 24, 564–572 (1991).

    Google Scholar 

  5. K. J. McLean,IEE Proc. 135, 347–361 (1988).

    Google Scholar 

  6. S. Masuda, M. Hirano, and K. Akutsu,Radiat. Phys. Chem. 17, 223–228 (1981).

    Google Scholar 

  7. S. Masuda,Pure Appl. Chem. 60, 727–731 (1988).

    Google Scholar 

  8. N. Frank and S. Hirano, “The history of electron beam processing for environmental pollution control and work performed in the United States,” inNon-Thermal Plasma Techniques for Pollution Control, NATO Advanced Series Institute Series G,3413, eds. B. M. Penetrante and S. E. Schultheis, Springer, Heidelberg (1993), pp. 1–26.

    Google Scholar 

  9. L. Civitano and E. Sani “DeNOx-deSOx process by gas energization,” inPlasma Technology: Fundamentals and Applications, ed. M. Capitelli, Plenum, New York (1992), pp. 153–166.

    Google Scholar 

  10. R. H. Amirov, E. I. Asinovsky, L. I. Kropp, I. S. Samoilov., and A. M. Zykov, “Effect of fly ash removal of sulfur dioxide from flue gas utilizing nanosecond corona discharges,” in 10th Symposium on Elementary Processes and Chemical Reactions in Low-Temperature Plasma, ed. M. Morvova and P. Lukac, Comenius University, Bratislava (1994).

    Google Scholar 

  11. S. Masuda, “Report on novel dry DeNO x /DeSO x technology for cleaning combustion gases from utility thermal power plant boilers,” inNon-Thermal Plasma Techniques for Pollution Control, NATO Advanced Series Institute Series G,34B, eds. B. M. Penetrante and S. E. Schultheis, Springer, Heidelberg (1993), pp. 131–137.

    Google Scholar 

  12. E. M. van Veldhuizen, Y. L. M. Creyghton, and W. R. Rutgers, “Conversion of NO and SO2 by pulsed corona discharge,” in Book of Invitee Lectures of 10th Symposium on Elementary Processes and Chemical Reactions in Low-Temperature Plasma, eds. M. Morvova and P. Lukac, Comenius University, Bratislava (1994).

    Google Scholar 

  13. J. S. Clements, A. Mizuno, W. C. Finney, and R. H. Davis,IEEE Trans. Ind. Appl. 25, 62–69 (1989).

    Google Scholar 

  14. K. Yan, R. Li, M. Cui, L. Zhou, and H. Zhao, “Removal of NO x and SO2 by bipolar corona,” Proc. 4th Int. Conf. on Electrostat. Precip ed. Ruinian Li, Int. Ac. Publ Beijing (1991), pp. 635–649.

  15. S. Masuda, Y. Wu, T. Urabe, Y. Ono, “Pulse corona induced plasma chemical process for DeNO x , DeSO x , and mercury vapour control of combustion gas,” Proc. 3rd Int. Conf. on Electrostat. Precip., ed. M. Rea, Abano-Padova, Italy, Masera di Padova: Tipolito (1987), pp. 667–676.

    Google Scholar 

  16. R. H. Amirov, E. I. Asinovski, I. S. Samoilov, and A. V. Shepelin,Plasma Sources Sci. Technol. 2, 289–295 (1993).

    Google Scholar 

  17. K. Fuji, “Simultaneous removal of NO x SO x and soot in diesel engine exhaust by plasma/oil dynamic means,” inPlasma Technology: Fundamentals and Applications, ed. M. Capitelli, Plenum, New York (1992), pp. 143–152.

    Google Scholar 

  18. B. M. Penetrante, G. E. Vogtlin, J. N. Bardsley, P. A. Vitello, and P. H. Wallman, “Application of non-thermal plasmas for pollution control,” Proc. 2nd Int. Plasma Symp. World Progress in Plasma Appl., Palo Alto, California, 1993, pp. 1–11.

  19. N. Yu. Babaeva, A. A. Kulikovskiy, A. Kh. Mnatsakanian, G. V. Naidis, and Yu. M. Solozobov,Flue Gas Cleaning by Pulse Corona, Part I: The Streamer Propagation Models in N 2-O2 Mixtures and Flue Gas, IVTAN Analytical & Numerical Research Association, Moscow, Research Report IVTAN-ANRA #93/2, 1993, pp. 1–48.

    Google Scholar 

  20. G. Yu. Alekseev, A. V. Levchenko, and V. A. Bityurin,Flue Gas Cleaning by Pulse Corona, Part II: The Chemical Kinetics and Heat- and Mass Transfer in NO/SO 2 Removal, IVTAN Analytical & Numerical Research Association, Moscow, Research Report IVTAN-ANRA #93/2, 1993.

    Google Scholar 

  21. Y. L. M. Creyghton, W. R. Ruigers, and E. M. van Veldhuizen, “In-situ investigation of pulsed corona discharge,” Eindhoven University of Technology, EUT Report 93-E-279, 1993.

  22. Y. L. M. Creyghton, E. M. van Veldhuizen and W. R. Rutgers,IEE Proc.-Sci. Meas. Technol. 141, 141–147 (1994).

    Google Scholar 

  23. M. Yousfi, A. Himoudi, and A. Gaouar,Phys. Rev. A 46, 7889–7901 (1992).

    Google Scholar 

  24. J.-M. Guo and C.-H.J. Wu,IEEE Trans. Plasma Sci. 21, 684–695 (1993).

    Google Scholar 

  25. G. A. Dawson and W. P. Winn,Z. Phys. 183, 159–171 (1964).

    Google Scholar 

  26. F. Bastien and E. Marode,J. Phys. D 12, 249–263 (1979).

    Google Scholar 

  27. A. J. Davies and C. J. Evans,Proc. IEE 114, 1547–50 (1967).

    Google Scholar 

  28. I. Gallimberti, Pure Appl. Chem.60, 663–674 (1988).

    Google Scholar 

  29. H. F. A. Verhaart,Kema Sci. Tech. Rep. 7, 377–383 (1989).

    Google Scholar 

  30. M. Yousfi, A. Poinsignon, and A. Hamani (1993), “Electron database needed for discharge modelling in flue gas treatment, inNon-Thermal Plasma Techniques for Pollution Control, NATO Advanced Series Institute Series G,34A, eds. B. M. Penetrante and S. E. Schultheis, Springer, Heidelberg 1993, pp. 299–330.

    Google Scholar 

  31. M. B. Zheleznyak, A. Kh. Mnasakanian, and S. V. Sizykh,High Temp. 20, 423–428 (1982).

    Google Scholar 

  32. N. Sato,J. Phys. D. 13, L3–6 (1980).

    Google Scholar 

  33. R. Morrow and L. E. Cram,J. Comput. Phys. 57, 129–138 (1985).

    Google Scholar 

  34. R. Morrow,J. Comput. Phys. 43, 1–15 (1981).

    Google Scholar 

  35. H. Mätzing, “Chemical Kinetics of Flue Gas Cleaning by Electron Beam,” Kernforschungszentrum Karlsruhe, Germany, Report KfK 4494, 1989.

    Google Scholar 

  36. J. C. Person, et al., “A unified projection of the performance and economics of radiation-initiated NO x /SO x emission control technologies,” U.S. Department of Energy, Pittsburgh Energy Technology Center, Pittsburgh, Pennsylvania 15236, Report No. PSI-TR-259/542, DE86 003620, 1985.

    Google Scholar 

  37. D. L. Baulch et al., CODATA Task Group on Chemical Kinetics, “Evaluated kinetic and photochemical data for atmospheric chemistry,”J. Phys. Chem. Ref. Data.9, 295–471 (1980);J. Phys. Chem. Ref. Data,11, 327–497 (1982);J. Phys. Chem. Ref. Data,13, 1259–1381 (1984).

    Google Scholar 

  38. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modelling. Evaluation Number 9, Jet Propulsion Laboratory, California Institute of Technology, NASA, Pasadena, 1990.

  39. K. Yan and E. M. van Veldhuizen,Flue Gas Cleaning by Pulse Corona Streamer, EUT Report 93-E-272, 1993.

  40. E. V. Belousova et al.,Khim. Vys. Energ. (Eng. Transl.),25, 468–469 (1991).

    Google Scholar 

  41. P. Pirgov, “Electron energy distribution function and reaction rates for air and flue gas,” Eindhoven University of Technology, Internal Report EG/93/654, 1993.

  42. K. Yan, E. M. van Veldhuizen, A. H. F. M. Baede, Y. L. M. Creyghton, and W. R. Rutgers, “Electron energy for primary and secondary streamers of pulsed corona in relation with flue gas cleaning,” Proc. 11th Int. Symp. on Plasma Chem., Loughborough, UK (1993 ), pp. 609–615.

  43. O. Tokunaga, H. Namba, K. Hirota, “Experiments on chemical reactions in electronbeam-induced NO x /SO2 removal,” inNon-Thermal Plasma Techniques for Pollution Control, NATO Advanced Series Institute Series G,34B, eds. B. M. Penetrante and S. E. Schultheis, Springer, Heidelberg (1993), pp. 55–69; B. V. Potapkin, M. A. Deminsky, A. A. Fridman, and V. D. Rusanov, “The effect of clusters and heterogenous reactions on non-equilibrium plasma flue gas cleaning,”ibid., pp. 91–106 (1993). A. T. Kunavin, A. V. Markow, D. V. Sapozhnikov, and V. Y. Yakovlev, “Intensification of E-beam processing of SO2 removal from flue gas,”ibid., pp. 63–69 (1993).

    Google Scholar 

  44. S. Masuda, and H. Nakao,IEEE Trans. IAS 26, 374–383 (1990).

    Google Scholar 

  45. J. Mäkelä,Acta Polytech. Scand. Appl. Phys. Ser.No. 182, Helsinki (1992).

  46. A. A. Lawrence, “Nitrogen oxides emission control,”Pollut. Control Rev., No. 90, Noyes Data Corp (1972).

  47. N. W. Frank, “Economics of the electron beam process,” inNon-Thermal Plasma Techniques for Pollution Control, NATO Advanced Series Institute Series G,34B, eds. B. M. Penetrante and S. E. Schultheis, Springer, Heidelberg (1993), pp. 27–32.

    Google Scholar 

  48. P. Sincerny, C. Deeney, S. Ashby, D. Bhasavanich, J. Benford, G. Frazier, J. Levine, and L. Schlitt, High average power modulator and accelerator technology developments at Physics International, inNon-Thermal Plasma Techniques for Pollution Control, NATO Advanced Series Institute Series G,34A, eds. B. M. Penetrante and S. E. Schultheis, Springer, Heidelberg (1992), pp. 355–365. E. L. Neau, H. C. Harjes, K. W. Reed, K. J. Penn, R. W. Wavrik, D. L. Johnson, C. R. McClenahan, and K. R. Prestwich (1992), “Initial results from the RHEPP module,”idem. pp. 367–378.

    Google Scholar 

  49. A. A. Kulikovski,J. Phys. D. Appl. Phys. 27, I: 2556–2563, II: 2564–2569 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Veldhuizen, E.M., Rutgers, W.R. & Bityurin, V.A. Energy efficiency of NO removal by pulsed corona discharges. Plasma Chem Plasma Process 16, 227–247 (1996). https://doi.org/10.1007/BF01570180

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01570180

Key words

Navigation