Skip to main content
Log in

Study on the coercivity of granular solid iron

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The iron granular solid, in which ultrafine iron particles are dispersed, has been prepared with both SiO2 and Cu matrices using the sol-gel method. The structure and morphology of these granular solid samples are investigated by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The magnetic properties are measured using a vibrating sample magnetometer with 20 kOe maximum applied field. It is found that the coereivity decreases very slightly with temperature from 80 to 300 K for these Fe−SiO2 and Fe−Cu granular solid samples with different average size of iron particles from 50 to 300 Å. The magnetic anisotropy has been obtained from the measured magnetization curves for these granular solid samples using the law of approach to saturation, and the obtained values of the effective magnetic anisotropy are all more than 106 erg/cm3, which are larger than the value of the magnetocrystalline anisotropy for bulk iron. The coercivity vs temperature for these granular solid samples has been calculated using the Kneller and Luborsky theory, in which the magnetic anisotropy values obtained from the law of approach to saturation are used. The trends of the calculated coercivity as a function of temperature are in reasonable agreement with the observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Abeles: InApplied Solid State Science (Academic, New York 1976) p. 1

    Google Scholar 

  2. B. Abeles, P. Sheng, M.D. Couts, Y. Arie: Adv. Phys.24, 407 (1975)

    Google Scholar 

  3. C.L. Chien: J. Appl. Phys.69, 5267 (1991)

    Google Scholar 

  4. G. Xiao, C.L. Chien: Appl. Phys. Lett.51, 1280 (1987)

    Google Scholar 

  5. C.L. Chien, G. Xiao, S.H. Liou, J.N. Taylor, A. Levy: J. Appl. Phys.61, 3311 (1987)

    Google Scholar 

  6. S.H. Liou, C.L. Chien: Appl. Phys. Lett.52, 512 (1988)

    Google Scholar 

  7. R.D. Shull, J.J. Ritter, A.J. Shapiro, L.J. Swartzendruber, L.H. Bennet: Mater. Res. Soc. Symp. Proc.132, 179 (1989)

    Google Scholar 

  8. D.P. Yamato, A.L. Landis, T.S. Kuan: Mater. Res. Soc. Symp. Proc.132, 73 (1989)

    Google Scholar 

  9. R.D. Shull, J.J. Ritter, A.J. Shapiro, L.J. Swartzendruber, L.H. Bennet: J. Appl. Phys.67, 4490 (1990)

    Google Scholar 

  10. S. Gangopadhyay, G.C. Hadjipanayis, S.I. Shah, C.M. Sorensen, K.J. Klabunde, V. Papaefthymion, A. Kostikas: J. Appl. Phys.70, 5888 (1991)

    Google Scholar 

  11. S. Gangopadhyay, G.C. Hadjipanayis, C.M. Sorensen, K.J. Klabunde: Tech. Dig. Int'l Magnetics Conf., Stockholm (1993) Paper EA-02

  12. S. Roy, D. Das, D. Chakravorty: J. Appl. Phys.74, 4746 (1993)

    Google Scholar 

  13. A. Chatterjee, A. Datta, A.K. Giri, D. Das, D. Chakravorty: J. Appl. Phys.72, 3832 (1992)

    Google Scholar 

  14. A.E. Berkowitz: InScience and Technology of Nanostructured Magnetic Material, ed. by G.C. Hadjipanayis, G.A. Prinz (Plenum, New York 1991) p. 541

    Google Scholar 

  15. S.H. Liou, C.L. Chien: J. Appl. Phys.63, 4240 (1988)

    Google Scholar 

  16. A. Gavrin, C.L. Chien: J. Appl. Phys.67, 938 (1990)

    Google Scholar 

  17. R.L. Holtz, P. Lubitz, A.S. Edelstein: Appl. Phys. Lett.56, 943 (1990)

    Google Scholar 

  18. A.H. Morrish: InThe Physical Principles of Magnetism (Wiley, New York 1965) p. 394

    Google Scholar 

  19. S. Gangopadhyay, G.C. Hadjipanayis, B. Dale, C.M. Sorensen, K. Klabunde, V. Papaefthymion, A. Kostikas: Phys. Rev. B45, 9778 (1992)

    Google Scholar 

  20. K.Y. Ho, X.Y. Xiong, J. Zhi, L.-Z. Cheng: J. Appl. Phys.74, 6788 (1993)

    Google Scholar 

  21. T. Ambrose, A. Gavrin, C.L. Chien: J. Magn. Magn. Mater.116, 1311 (1992)

    Google Scholar 

  22. A. Chatterjee, D. Das, D. Chakravorty: Appl. Phys. Lett.57, 1360 (1990)

    Google Scholar 

  23. K.N. Trohidou, C.M. Soukoulis, A. Kostikas, G. Hadjipanayis: J. Magn. Magn. Mater.104–107, 1587 (1992)

    Google Scholar 

  24. I.S. Jacobs, C.P. Bean: InMagnetism, ed. by G.T. Rado, H. Suhl, Vol. 3 (Academic, New York 1963), p. 272

    Google Scholar 

  25. K. Ražnjević: InHandbook of Thermodynamic Tables and Charts (Hemisphere, London 1976) p. 5

    Google Scholar 

  26. E.F. Kneller, F.E. Luborsky: J. Appl. Phys.34, 656 (1963)

    Google Scholar 

  27. J.-P. Wang, L.-H. Luo: J. Magn. Magn. Mater. (1995) (in press)

  28. W.F. Brown: Phys. Rev.60, 139 (1941)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J.P., Han, D.H., Luo, H.L. et al. Study on the coercivity of granular solid iron. Appl. Phys. A 61, 407–413 (1995). https://doi.org/10.1007/BF01540115

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01540115

PACS

Navigation