Skip to main content
Log in

Spatial and quantitative distribution of human peritumoural brain oedema in computerized tomography

  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

Computerized tomography (CT) was used to study the pathways of oedema spreading in man. Based on the assumption that local changes in CT numbers in oedematous white matter closely correspond to changes in tissue water content, CT numbers of consecutive tissue blocks of 3.0–3.6 mm were examined in the main directions of oedema spreading: a) towards the deep white matter, b) towards the cortex and c) towards the ventricle. Tumours with oedema grade II and III showed a reduction of CT number of 10 + 1.8. The corresponding increase in water content of about 10–12% seems to be an upper limit of fluid accumulation in the white matter. From this oedema centre, water content very slowly and gradually decreased along the oedema projection into the deep white matter. In contrast, if oedema reached the cortex of adjacent gyri, the decline in water content was very sharp. A similar observation was made in the external capsule where oedema sharply declined at the border to the adjacent grey matter, putamen and claustrum. Oedema projection towards the ventricle showed a nearly uniform magnitude from the centre to the ventricular lining, suggesting a certain resistance by a limited capacity of transependymal drainage of oedema fluid. It is assumed that the spatial distribution and extension of oedema around a brain tumour is determined by a system of differential resistance to fluid movement in the following order: grey matter — ventricular lining — white matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adachi M, Feigin J (1966) Cerebral edema and the water content of normal white matter. J Neurol Neurosurg Psychiatry 29: 446–450

    PubMed  Google Scholar 

  2. Bruce DA, Ter Weeme C, Kaiser G (1976) The dynamics of small and large molecules in the extracellular space and CSF following local cold injury of the cortex. In: Pappius HM, Feindel W (eds). Dynamics of brain edema. Springer, New York Heidelberg, pp 43–49

    Google Scholar 

  3. Blasberg R, Patlak C, Shapiro W, Fenstermacher J (1979) Metastatic brain tumors: local blood flow and capillary permeability. Neurology (Minneap) 29: 547

    Google Scholar 

  4. Clasen RA, Huckman MS, Pandolfy S, Laing I, Jacobs J (1976) Computed tomography of vasogenic cerebral edema. In: Pappius HM, Feindel W (eds). Dynamics of brain edema. Springer, Berlin Heidelberg New York, pp 278–282

    Google Scholar 

  5. Fenstermacher ID, Patlak CS, Blasberg RG (1974) Transport of material between brain extracellular fluid, brain cells and blood. Fed Proc 33: 2070

    PubMed  Google Scholar 

  6. Feigin J, Budzilovich G, Ogata J (1971) Edema of the grey matter of the human brain. J Neuropath Exp Neurol 30: 206–215

    PubMed  Google Scholar 

  7. Hossmann KA, Bloeink M, Wilmes F, Wechsler W (1980) Experimental peritumoral edema of the cat brain. In: Cervos-Navarro J, Ferszt R (eds): Brain edema. Raven-Press, New York, pp 323–340

    Google Scholar 

  8. Klatzo I (1972) Pathophysiological aspects of brain edema. In: Reulen HJ, Schuermann K (eds): Steroids and brain edema. Springer, New York Berlin Heidelberg, pp 1–8

    Google Scholar 

  9. Klatzo I, Chui E, Fujiwara K, Spatz M (1980) Resolution of vasogenic brain edema. In: Cervos-Navarro J, Ferszt R (eds): Brain edema. Raven-Press, New York, pp 359–373

    Google Scholar 

  10. Lanksch WR, Baethmann A, Kauzner E (1981) Computed tomography of brain edema. In: de Vlieger M, de Lange SA, Beks JWF (eds). Brain edema. John Wiley & Sons, New York Chichester Brisban Toronto, pp 67–98

    Google Scholar 

  11. Lanksch WR (1982) The diagnosis of brain edema by computed tomography. In: Hartmann A, Brock M (eds). Treatment of cerebral edema. Springer, Berlin Heidelberg New York, pp 43–80

    Google Scholar 

  12. Lux WE, Hochwald GH, Sahar A (1970) Periventricular water content: Effect of pressure in experimental hydrocephalus. Arch Neurol 23: 457–479

    Google Scholar 

  13. Marmarou A, Takagi H, Shulman K (1980) Biomechanics of brain edema and effects on local cerebral blood flow. In: Cervos-Navarro J, Ferszt R (eds). Advances in neurology, vol 28: Brain edema. Raven Press, New York, pp 345–358

    Google Scholar 

  14. Marmarou A, Tanaka K, Shulman K (1982) The brain response to infusion edema: Dynamics of fluid resolution. In: Hartmann A, Brock M (eds). Treatment of cerebral edema. Springer, Berlin Heidelberg New York, pp 11–18

    Google Scholar 

  15. Marmarou A, Nakamura T, Tanaka K, Hochwald GM (1984) The time course and distribution of water in the resolution phase of infusion edema. In: Go KG, Baethmann A (eds). Recent progress in the study and therapy of brain edema. Plenum Press, New York London, pp 37–44

    Google Scholar 

  16. Matson FA, West CR (1972) Supracortical fluid. A monitor of albumin exchange in normal and injured brain. Amer J Physiol 222: 532

    PubMed  Google Scholar 

  17. Meinig G, Reulen HJ, Wende S, Schuermann K (1982) Use of dexamethasone and furosemide in brain edema resulting from brain tumors. In: Hartmann A, Brock M (eds). Treatment of brain edema. Springer, Berlin New York Heidelberg, pp 139–156

    Google Scholar 

  18. Penn RD (1980) Cerebral edema and neurological function: CT, evoked response and clinical examination. In: Cervos-Navarro J, Ferszt R (eds). Advances in neurology, vol 28, Brain edema. Raven Press, New York

    Google Scholar 

  19. Reulen HJ, Graham R, Spatz M, Klatzo I (1977) Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema. J Neurosurg 46: 24–35

    PubMed  Google Scholar 

  20. Reulen HJ, Tsuyumu M, Tack A, Fenske A, Prioleau G (1978) Clearance of edema fluid into CSF: A mechanism for resolution of vasogenic brain edema. J Neurosurg 48: 754–764

    PubMed  Google Scholar 

  21. Reulen HJ, Tsuyumu M, Prioleau G (1980) Further results concerning the resolution of vasogenic brain edema. In: Cervos-Navarro J, Ferszt R (eds). Brain edema. Raven Press, New York, pp 375–381

    Google Scholar 

  22. Reulen HJ, Tsuyumu M (1981) Pathophysiology of formation and natural resolution of vasogenic brain edema. In: de Vlieger M, de Lange S, Beks JWF (eds). Brain edema. John Wiley & Sons, New York, pp 31–48

    Google Scholar 

  23. Shulman K, Marmarou A, Weitz S (1975) Gradients of brain interstitial fluid pressure in experimental brain infusion and compression. In: Lundberg N, Pontin U, Brock M, Intracranial Pressure II. Springer, New York Berlin Heidelberg, pp 221–223

    Google Scholar 

  24. Torack RM, Alcala H, Gado M, Burton R (1976) Correlative essay of computerized cranial tomography, water content and specific gravity in normal and pathological postmortem brain. J Neuropathol Exp Neurol 35: 385–392

    PubMed  Google Scholar 

  25. Tsuyumu M, Reulen HJ, Inaba Y: Dynamics of fluid movement through brain parenchyma and into the CSF in vasogenic brain edema. In: Inaba Y, Tsuyumu M (eds). Brain edema V. Springer, New York Berlin Heidelberg, in press

  26. Yamada K, Bremer AM, West C (1979) Effect of dexamethasone on tumor-induced brain edema and its distribution in the brain of monkeys. J Neurosurg 50, 361–367

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, U., Reulen, H.J. & Huber, P. Spatial and quantitative distribution of human peritumoural brain oedema in computerized tomography. Acta neurochir 81, 53–60 (1986). https://doi.org/10.1007/BF01456265

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01456265

Keywords

Navigation