Skip to main content
Log in

Electron beam generated plasma decomposition of 1,1,1-trichloroethane

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Dilute concentrations of 1,1,1-trichloroethane (TCA) in air were decomposed in an electron beam generated plasma reactor. The energy required for high levels of TCA decomposition (greater than 90%) was determined as a function of inlet concentration. For 99%, decomposition of TCA, ez300 eV/molecule at 250 ppm inlet concentration, and ε¨~100 eV/molecule at 3000 ppm. A radical reaction mechanism is proposed which accounts for the formation of the major reaction products: 1,1-dichloroethylene, HCl, chloroacetylchloride, CO2, and COCl2. A model is derived based on first-order inhibited kinetics; a fit of the data to the model shows that at high decomposition fractions, radical scavenging by reaction products is a significant inhibitor of TCA decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Research Council, Alternatives for Groundwater Cleanup, National Academy Press, Washington D.C. (1994).

  2. R. Hamilton,Solid State Technol., 51 (1991).

  3. T. Aida, R. Higuchi, and H. Niyama,Chem. Lett., 2247 (1990).

  4. S. Okazaki and A. Kurosaki,Chem. Lett., 1901 (1989).

  5. T. R. Krause and J. E. Helt, inEmerging Technologies in Hazardous Waste Management III, W. D. Todder and F. G. Pohland, eds., ACS, Washington D.C. (1993), Chapter 19.

    Google Scholar 

  6. M. C. Hsiao, B. T. Merritt, B. M. Penetrante, G. E. Vogtlin, and P. H. Wallman,J. App. Phys. 78, 3451 (1995).

    Google Scholar 

  7. H. Shaw, Y. Wang, T. Yu, and A. E. Cerkanowicz, inEmerging Technologies in Hazardous Waste Management III, W. D. Todder and F. G. Pohland, eds., ACS, Washington D.C. (1993), Chapter 17.

    Google Scholar 

  8. J. W. Bozzelli and R. B. Barat,Plasma Chem. Plasma Proc. 8, 293 (1988).

    Google Scholar 

  9. W. A. Apel, P. R. Dugan, M. R. Wiebe, E. G. Johnson, J. H. Wolfram, and R. D. Rogers, inEmerging Technologies in Hazardous Waste Management III, W. D. Todder and F. G. Pohland, eds., ACS, Washington D.C. (1993), Chapter 20.

    Google Scholar 

  10. R. C. Slater and D. H. Douglas-Hamilton,J. Appl. Phys. 52, 5820 (1981).

    Google Scholar 

  11. S. M. Matthews, A. J. Boegel, S. F. Eccles, S. G. Homann, D. W. Rice, J. A. Loftis, M. C. Jovanovich, R. A. Caufield, B. J. Mincher, D. H. Meikrantz, R. J. Murphy, G. L. Gresham, and M. J. Connoly,J. Radioanal. Nucl. Chem. 161, 253 (1992).

    Google Scholar 

  12. M. Koch, D. R. Cohn, R. M. Patrick, M. P. Scheutze, L. Bromberg, D. Reilly, K. Hadidi, P. Thomas, and P. Falkos, “Electron beam atmospheric pressure cold plasma decomposition of tetrachloromethane CCI, and trichloroethylene C=HCI3,” submitted toEnviron. Sci. Technol. (1994).

  13. M. Koch, D. R. Cohn, R. M. Patrick, M. P. Scheutze, L. Bromberg, D. Reilly, and P. Thomas,Phvs. Lett. A 184, 109 (1993).

    Google Scholar 

  14. N. W. Frank and S. Hirano,Radial. Phvs. Chem. 35, 409 (1990).

    Google Scholar 

  15. K. Kawamura and V. H. Shui,Radial. Phys. Chem. 24, 117 (1984).

    Google Scholar 

  16. J. Hiley, W. A. Frutiger, and S. V. Nablo,Nucl. Instrum. Methods Phys. Res. B24/25, 985 (1987).

    Google Scholar 

  17. S. Jordan, H. R. Paur, and W. Schikarski,Phys. Unserer Z. 19, 8 (1988).

    Google Scholar 

  18. S. Jordan,Radial. Phys. Chem. 35, 405 (1990).

    Google Scholar 

  19. U. Willibald, K. H. Platzer, and S. A. Wittig,Radial. Phys. Chem. 35, 422 (1990).

    Google Scholar 

  20. K. H. Platzer, U. Willibald, J. Gottstein, A. Tremmel, H. J. Angele, and K. Zellner,Radial. Phys. Chem. 35, 427 (1990).

    Google Scholar 

  21. L. G. Christophorou,Atomic and Molecular Radiation Phvsics, Wiley-Interscience, New York (1972), p. 483.

    Google Scholar 

  22. K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, and S. Iwata,Handbook of Hel Photoelectron Spectra of Fundamental Organic Molecules, Halsted Press, New York (1981), p. 94.

    Google Scholar 

  23. M. Koch, “Decomposition of chlorinated organic compounds in gaseous hazardous waste using a tunable plasma reactor,” Ph.D. Thesis, MIT Department of Nuclear Engineering (1994).

  24. M. Koch,Radial. Phys. Chem. 46, 359 (1995).

    Google Scholar 

  25. J. A. Halbleib, R. P. Kensek, T. A. Mehhom, and G. D. Valdez, ITS Version 3.0: The Integrated TIGER series of Coupled Electron/Photon Monte Carlo Transport Codes, SAND91-1534, March 1992.

  26. M. J. Thomson, B. S. Higgins, D. Lucas, C. P. Koshland, and R. F. Sawyer,Combust. Flame 98, 350 (1994).

    Google Scholar 

  27. Z. Jiang, P. H. Taylor, and B. Dellinger,J. Phys. Chem. 96, 8961 (1992).

    Google Scholar 

  28. L. Nelson, I. Shanahan, H. W. Sidebottom, J. Treacy, and O. J. Nielsen,Int. J. Chem. Kinet. 22, 577 (1990).

    Google Scholar 

  29. M. J. Thomson, D. Lucas, C. P. Koshland, R. F. Sawyer, Y. Wu, and J. W. Bozzelli,Combust. Flame 98, 155 (1994).

    Google Scholar 

  30. J. S. Chang and F. Kaufman,J. Chem. Phys. 66, 4989 (1977).

    Google Scholar 

  31. L. G. Christophorou,Electron-Molecule Interactions and Their Applications, Vol. I, Academie Press, New York (1984).

    Google Scholar 

  32. J. R. Hollahan and A. T. Bell,Techniques and Applications of Plasma Chemistry, Wiley, New York (1974), p. 29.

    Google Scholar 

  33. R. B. Barat and J. W. Bozzelli,Environ. Sci. Technol. 23, 666 (1989).

    Google Scholar 

  34. L. A. Rosocha and W. H. McCulla, “Cold plasma destruction of air-based toxic compounds,” presented at “Plasma Technologies for the Destruction of Air Toxics,” Southern California Edison-Customer Technology Appreciation Center, San Diego, California, December, 1991.

  35. L. A. Rosocha, G. K. Anderson, L. A. Bechtold, J. J. Coogan, H. G. Heck, M. Kang, W. H. McCulla, R. A. Tennant, and P. J. Wantuck, “Treatment of hazardous organic wastes using silent discharge plasmas,” Proceedings of NATO Advanced Research Workshop on Non-Thermal Plasma Technologies for Pollution Control, Cambridge, England, LA-UR-92-3552, 1992.

  36. D. Evans, L. A. Rosocha, G. K. Anderson, J. J. Coogan, and M. J. Kushner,J. Appl. Phys. 74, 5378–5386 (1993).

    Google Scholar 

  37. L. A. Rosocha, G. K. Anderson, L. A. Bechtold, J. J. Coogan, H. G. Heck, M. Kang, W. H. McCulla, R. A. Tennant, and P. J. Wantuck, inNon-Thermal Plasma Techniques for Pollution Control: Part B-Electron Beam and Electrical Discharge Processing, B. M. Penetrante and S. E. Scheultheis, eds., Springer, Heildberg (1993), pp. 281–308.

    Google Scholar 

  38. L. A. Rosocha and J. J. Coogan, ldProcessing of pollutants in dielectric-barrier plasma reactors,” in Proceedings of the 12th International Symposium on Plasma Chemistry, Vol. 2, J. V. Heberlein, D. W. Ernie, and J. T. Roberts, eds., pp. 665–670, 1995.

  39. W. C. Neely, E. I. Newhouse, E. J. Clothiaux, and C. A. Gross, inNon-Thermal Plasma Techniques for Pollution Control: Part B- Electron Beacn and Electrical Discharge Processing, B. M. Penetrante and S. E. Scheultheis, eds., Springer, Heildberg (1993), pp. 302–320.

    Google Scholar 

  40. B. M. Penetrante, M. C. Hsiao, J. N. Bardsley, B. T. Merritt, G. E. Vogtlin, and P. H. Wallman,Phys. Lett. A 209, 69 (1995).

    Google Scholar 

  41. B. M. Penetrante, M. C. Hsiao, J. N. Bardsley, B. T. Merritt, G. E. Vogtlin, and P. H. Wallman,Pure Appl. Chem. 68, 1083 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hadidi.

Additional information

This work was supported by the Contaminant Plume Containment and Remediation Focus Area, Office of Environmental Management, U.S. Department of Energy.

Also affiliated with the Department of Nuclear Engineering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitale, S.A., Hadidi, K., Cohn, D.R. et al. Electron beam generated plasma decomposition of 1,1,1-trichloroethane. Plasma Chem Plasma Process 16, 651–668 (1996). https://doi.org/10.1007/BF01447013

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447013

Key words

Navigation