Skip to main content
Log in

Harmonic noise: Effect on bistable systems

  • Original Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The coordinate of a white noise driven harmonic oscillator is used as a stochastic source term in bistable dynamics. This new kind of Gaussian colored noise gives rise to resonance phenomena due to a peak in the spectrum. We investigate its effect on linear and bistable systems. We derive a Markovian approximation for driven bistable oscillators and overdamped systems. In the resonance region computer simulations were carried out using an extension of Fox' algorithm procedure for colored noise. We find an increase of the transition rates in bistable systems as compared with the case of bistable systems driven by white and exponentially correlated noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stratonovich, R.L.: Topics in the theory of random noise. Vols. 1, 2. New York: Gordon and Breach 1963 and 1967

    Google Scholar 

  2. Moss, F., McClintock, P.V.E. (eds.). Noise in nonlinear dynamical systems. Vol. 1: Theory of continuous Fokker-Planck systems. Cambridge: Cambridge University Press 1989

    Google Scholar 

  3. Moss, F., McClintock, P.V.E. (eds.): Noise in nonlinear dynamical systems. Vol. 2: Theory of noise induced processes in special applications. Cambridge: Cambridge University Press 1989

    Google Scholar 

  4. Moss, F., McClintock, P.V.E. (eds.): Noise in nonlinear dynamical systems. Vol. 3: Experiments and simulations. Cambridge: Cambridge University Press 1989

    Google Scholar 

  5. McNamara, B., Wiesenfeld, K., Roy, R.: Phys. Rev. Lett.60, 1616 (1988)

    Google Scholar 

  6. Jung, P., Hänggi, P.: Europhys. Lett.8, 505 (1989)

    Google Scholar 

  7. Debnath, G., Zhou, G., Moss, F.: Phys. Rev. A39, 4223 (1989)

    Google Scholar 

  8. McNamara, B., Wiesenfeld, K.: Phys. Rev. A39, 4854 (1989)

    Google Scholar 

  9. Ebeling, W., Romanovski, Yu.M.: Z. Phys. Chem. (Leipzig)266, 836 (1985);

    Google Scholar 

  10. Ebeling, W., Jenssen, M.: Physica D32, 183 (1988)

    Google Scholar 

  11. Klimontovich, Yu.L.: The kinetic theory of electromagnetic processes, pp. 338–342. Berlin, Heidelberg, New York: Springer 1983;

    Google Scholar 

  12. Munakata, T., Kawakatsu, T.: Prog. Theor. Phys.74, 262 (1985);

    Google Scholar 

  13. Munakata, T.:In Ref. 3, pp. 24–44

    Google Scholar 

  14. Devoret, M.H., Martinis, J.M., Esteve, D., Clarke, J.: Phys. Rev. Lett.53, 1260 (1984)

    Google Scholar 

  15. Ben-Jacob, E., Bergmann, D., Carmeli, B., Nitzan, A.: NBS Special Publication 614. Proceedings of the Sixth International Conference on Noise in Physical Systems, p. 381;

  16. Carmeli, B., Nitzan, A.: Phys. Rev. A32, 2439 (1985);

    Google Scholar 

  17. Devoret, M.H., Esteve, D., Martinis, J.M., Cleland, A., Clarke, J.: Phys. Rev. B36, 58 (1987);

    Google Scholar 

  18. Fronzoni, L., Grigolini, P., Manella, R., Zamboon, B.: Phys. Rev. A34, 3293 (1986)

    Google Scholar 

  19. Faetti, S., Grigolini, P.: Z. Phys. B—Condensed Matter47, 353 (1982);

    Google Scholar 

  20. Marchesoni, F., Grigolini, P.: Physica121A, 269 (1983);

    Google Scholar 

  21. Fonseca, T., Grigolini, P.: Phys. Rev. A33, 1122 (1986);

    Google Scholar 

  22. Grigolini, P.:In Ref. 2, p. 161

    Google Scholar 

  23. Ebeling, W., Schimansky-Geier, L.:In Ref. 2, pp. 279–306

    Google Scholar 

  24. Lin, J.: Phys. Lett.70A, 195 (1979);

    Google Scholar 

  25. Bulsara, A.R., Lindenberg, K., Shuler, K.E.: J. Stat. Phys.27, 787 (1982);

    Google Scholar 

  26. San Miguel, M.: In: Recent developments in nonequilibrium thermodynamics. Casa-Vasquez, J. (ed.). Berlin, Heidelberg, New York: Springer 1984;

    Google Scholar 

  27. Pasquale, F. de, Racz, Z., San Miguel, M., Tartaglia, P.: Phys. Rev. A30, 5228 (1984);

    Google Scholar 

  28. Doering, C.R., Horsthemke, W.: J. Stat. Phys.38, 163 (1985);

    Google Scholar 

  29. Iyengar, R.N.: J. Stat. Phys.44, 907 (1986)

    Google Scholar 

  30. Chandrasekhar, S.: Rev. Mod. Physics15, 1 (1943)

    Google Scholar 

  31. Wang, M.C., Uhlenbeck, G.: Rev. Mod. Phys.17, 323 (1945)

    Google Scholar 

  32. Jung, P., Hänggi, P.: Phys. Rev. A35, 4464 (1987);

    Google Scholar 

  33. Hänggi, P.:In Ref. 2, pp. 307–328

    Google Scholar 

  34. H'walisz, L., Jung, P., Hänggi, P., Talkner, P., Schimansky-Geier, L.: Z. Phys. B—Condensed Matter77, 471 (1989)

    Google Scholar 

  35. Kramers, H.A.: Physica7, 284 (1940)

    Google Scholar 

  36. Risken, H., Vollmer, H.D.:In Ref. 2, pp. 191–224

    Google Scholar 

  37. Sancho, J.M., San Miguel, M., Katz, S.L., Gunton, J.D.: Phys. Rev. A26, 1589 (1982)

    Google Scholar 

  38. Fox, R.F., Gatland, I.R., Roy, R., Vemuri, G.: Phys. Rev. A38, 5938 (1988); see also: Fox, R.F.: J. Stat. Phys.54, 1353 (1989);

    Google Scholar 

  39. Manella, R., Palleschi, V.: Phys. Rev. A40, 3381 (1989)

    Google Scholar 

  40. Manella, R.:In Ref. 4, pp. 189–221

    Google Scholar 

  41. Gardiner, C.W.: Handbook of stochastic methods, pp. 366–372. Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  42. McClintock, P.V.E., Moss, F.:In Ref. 4, pp. 243–274

    Google Scholar 

  43. Fronzoni, L.:In Ref. 4, pp. 222–242

    Google Scholar 

  44. Carmeli, B., Nitzan, A.: Phys. Rev. A29, 1481 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schimansky-Geier, L., Zülicke, C. Harmonic noise: Effect on bistable systems. Z. Physik B - Condensed Matter 79, 451–460 (1990). https://doi.org/10.1007/BF01437657

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01437657

Keywords

Navigation