Skip to main content
Log in

Asymptotic properties of the exchange energy density and the exchange potential of finite systems: relevance for generalized gradient approximations

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

It is shown that generalized gradient approximations (GGAs) for exchange only, due to their very limited form, quite generally can not simultaneously reproduce both the asymptotic forms of the exchange energy density and the exchange potential of finite systems. Furthermore, mechanisms making GGAs formally approach at least one of these asymptotic forms do not improve the corresponding quantity in the relevant part of the asymptotic regime of atoms. By constructing a GGA which leads to superior atomic exchange energies compared to all GGAs heretofore but does not reproduce the asymptotic form of the exact exchange energy density it is demonstrated that this property is not important for obtaining extremely accurate atomic exchange energies. We conclude that GGAs by their very concept are not suited to reproduce these asymptotic properties of finite systems. As a byproduct of our discussion we present a particularly simple and direct proof of the well known asymptotic structure of the exchange potential of finite spherical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becke, A.D.: J. Chem. Phys.84, 4524 (1986)

    Google Scholar 

  2. Perdew, J.P., Wang, Y.: Phys. Rev. B33, 8800 (1986)

    Google Scholar 

  3. DePristo, A.E., Kress, J.D.: J. Chem. Phys.86, 1425 (1987)

    Google Scholar 

  4. Vosko, S.H., Macdonald, L.D.: In: Condensed matter theories, vol. 2. Vashishta, P., Kalia, R.K., Bishop, R.F. (eds.) p. 101. New York: Plenum 1987

    Google Scholar 

  5. Kutzler, F.W., Painter, G.S.: Phys. Rev. Lett.59, 1285 (1987); Phys. Rev. B43, 6865 (1991)

    Google Scholar 

  6. Mlynarski, P., Salahub, D.R.: Phys. Rev. B43, 1399 (1991)

    Google Scholar 

  7. Singh, D.J., Pickett, W.E., Krakauer, H.: Phys. Rev. B43, 11628 (1991)

    Google Scholar 

  8. Leung, T.C., Chan, C.T., Harmon, B.N.: Phys. Rev. B44, 2923 (1991)

    Google Scholar 

  9. Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C.: Phys. Rev. B (submitted)

  10. Becke, A.D.: Phys. Rev. A38, 3098 (1988)

    Google Scholar 

  11. Gunnarsson, O., Lundqvist, B.I.: Phys. Rev. B13, 4274 (1976)

    Google Scholar 

  12. Levy, M., Perdew, J.P., Sahni, V.: Phys. Rev. A30, 2745 (1984)

    Google Scholar 

  13. March, N.H.: Phys. Rev. A36, 5077 (1987)

    Google Scholar 

  14. Sharp, R.T., Horton, G.K.: Phys. Rev.90, 317 (1953)

    Google Scholar 

  15. Talman, J.D., Shadwick, W.F.: Phys. Rev. A14, 36 (1976)

    Google Scholar 

  16. Sahni, V., Gruenebaum, J., Perdew, J.P.: Phys. Rev. B26, 4371 (1982)

    Google Scholar 

  17. Langreth, D.C., Mehl, M.J.: Phys. Rev. B28, 1809 (1983)

    Google Scholar 

  18. Antoniewicz, P.R., Kleinman, L.: Phys. Rev. B31, 6779 (1985)

    Google Scholar 

  19. Levy, M., Perdew, J.P.: Phys. Rev. A32, 2010 (1985)

    Google Scholar 

  20. Sham, L.J.: Phys. Rev. B32, 3876 (1985)

    Google Scholar 

  21. Almbladh, C.-O., Barth, U. von: Phys. Rev. B31, 3231 (1985)

    Google Scholar 

  22. Harbola, M.K., Sahni, V.: Phys. Rev. Lett.62, 489 (1989)

    Google Scholar 

  23. Ortiz, G., Ballone, P.: Phys. Rev. B43, 6376 (1991)

    Google Scholar 

  24. Lee, C., Zhou, Z.: Phys. Rev. A44, 1536 (1991)

    Google Scholar 

  25. Krieger, J.B., Li, Y., Iafrate, G.J.: Phys. Lett. A146, 256 (1990); Phys. Lett. A148, 470 (1990)

    Google Scholar 

  26. Wang, Y., Perdew, J.P., Chevary, J.A., Macdonald, L.D., Vosko, S.H.: Phys. Rev. A41, 78 (1990)

    Google Scholar 

  27. Hohenberg, P., Kohn, W.: Phys. Rev. B136, 864 (1964)

    Google Scholar 

  28. Li, Y., Harbola, M.K., Krieger, J.B., Sahni, V.: Phys. Rev. A40, 6084 (1989)

    Google Scholar 

  29. Li, Y., Krieger, J.B., Chevary, J.A., Vosko, S.H.: Phys. Rev. A43, 5121 (1991)

    Google Scholar 

  30. Ghosh, S.K., Parr, R.G.: J. Chem. Phys.82, 3307 (1985)

    Google Scholar 

  31. Herman, F., Dyke, J.P. van, Ortenburger, I.B.: Phys. Rev. Lett.22, 807 (1969); Herman, F., Ortenburger, I.B., Dyke, J.P. van: Int. J. Quantum Chem.III S, 827 (1970)

    Google Scholar 

  32. Sham, L.J.: In: Computational methods in band theory. Marcus, P.M., Janak, J.F., Williams, A.R. (eds.) p. 458. New York: Plenum Press 1971

    Google Scholar 

  33. Kleinman, L., Lee, S.: Phys. Rev. B37, 4634 (1988); Chevary, J.A., Vosko, S.H.: Bull. Am. Phys. Soc.33, 238 (1988); Phys. Rev. B42, 5320 (1990); Engel, E., Vosko, S.H.: Phys. Rev. B42, 4940 (1990)

    Google Scholar 

  34. Lieb, E.H.: Rev. Mod. Phys.53, 603 (1981)

    Google Scholar 

  35. Perdew, J.P.: In: Electronic structure of solids, vol. 21. Ziesche, P. (ed.) Nova Science (submitted)

  36. Lee, H., Lee, C., Parr, R.G.: Phys. Rev. A44, 768 (1991)

    Google Scholar 

  37. Macdonald, L.D., Vosko, S.H.: Bull. Am. Phys. Soc.32, 856 (1987)

    Google Scholar 

  38. Posternak, M., Massidda, S., Baldereschi, A.: Bull. Am. Phys. Soc.36, 570 (1991)

    Google Scholar 

  39. Lieb, E.H., Oxford, S.: Int. J. Quantum Chem.19, 427 (1981)

    Google Scholar 

  40. Theophilou, A.K.: J. Phys. C12, 5419 (1978)

    Google Scholar 

  41. Levy, M.: Phys. Rev. A26, 1200 (1982)

    Google Scholar 

  42. Ou-Yang, H., Levy, M.: Phys. Rev. Lett.65, 1036 (1990)

    Google Scholar 

  43. TheE OPM x 's given in Table 2 are improved values compared to the OPM results published previously [44, 26]. They have been produced by using 4 times as many mesh points as in the original OPM code by Talman and collaborators [15, 44] as well as including some modifications to increase the numerical accuracy.

  44. Aashamar, K., Luke, T.M., Talman, J.D.: At. Data Nucl. Data Tables22, 443 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engel, E., Chevary, J.A., Macdonald, L.D. et al. Asymptotic properties of the exchange energy density and the exchange potential of finite systems: relevance for generalized gradient approximations. Z Phys D - Atoms, Molecules and Clusters 23, 7–14 (1992). https://doi.org/10.1007/BF01436696

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01436696

PACS

Navigation