Skip to main content
Log in

Agrobacterium-mediated DNA transfer

  • Published:
Journal of tissue culture methods

Summary

Agrobacterium tumefaciens naturally transfers DNA into plant cells and is clearly one of the most effective methods of directed DNA transfer presently available. Two kinds of vectors are commonly used. Cointegrative vectors have the foreign genes incorporated directly into the Ti plasmid. Binary vectors carry two plasmids; the main Ti plasmid where most of the T-DNA has been removed, and a second plasmid containing the foreign genes between the usual border sequences. The vir genes on the main plasmid function to mobilize the foreign genes into a plant cell. Most plant transformation methods follow the procedure of cocultivating wounded tissue with vir-gene-induced bacteria. The cocultivation step is followed by transfer to a selective medium containing antibiotics to kill the bacterium and to allow only growth of transformed tissue. Several selectable markers are available that include resistance to antibiotics, herbicides, or drugs. In addition, several scorable markers such as the bacterial glucuronidase, chloramphenicol acetyl transferase, and the Agrobacterium opine genes are used to verify transformation. Southern blotting and inheritance of transferred genes are ultimately used to demonstrate stable transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aerts, M.; Jacobs, M.; Hernalsteens, J-P., et al. Induction and in vitro culture ofArabidopsis thaliana crown gall tumors. Plant Sci. Lett. 17:43–50; 1979.

    Google Scholar 

  2. Albright, L. M.; Yanofsky, M. F.; Leroux, B., et al. Processing of the T-DNA ofAgrobacterium tumefaciens generates border nicks and linear, single-stranded T-DNA. J. Bacteriol 169:1046–1055; 1987.

    PubMed  Google Scholar 

  3. An, G. Development of plant promoter expression vectors and their use for analysis of differential activity of nopaline synthase promotor in transformed tobacco cells. Plant Physiol. 81:86–91; 1986.

    Google Scholar 

  4. An, G.; Ebert, P. R.; Mitra, A., et al. Binary vectors. Plant Mol. Biol. Man. A3:1–19; 1988.

    Google Scholar 

  5. Bevan, M. BinaryAgrobacterium vectors for plant transformation. Nucl. Acid Res. 12:8711–8712; 1984.

    Google Scholar 

  6. Binns, A. N.; Tomashow, M. F. Cell biology ofAgrobacterium infection and transformation of plants. Ann. Rev. Microbiol. 42:575–606; 1988.

    Google Scholar 

  7. Chilton, M.-D.; Drummond, M. H.; Merlo, D. J., et al. Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271; 1977.

    PubMed  Google Scholar 

  8. Chilton, M.-D.; Saiki, R. K.; Yadav, N., et al. T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumor cells. Proc. Natl. Acad. Sci. USA 77:4060–4064; 1980.

    Google Scholar 

  9. Draper, J.; Scott, R.; Hamil, J. Transformation of dicotyledonous plant cells using the Ti plasmid ofAgrobacterium tumefaciens and the Ri plasmid ofA. rhizogenes. In: Draper, J.; Scott, R.; Armitage, P., eds. Plant genetic transformation and gene expression — a laboratory manual. Oxford: Blackwell Scientific Publications; 1988:69–160.

    Google Scholar 

  10. Fraley R. T.; Rogers, S. G.; Horsch, R. B., et al. The SEV system: a new disarmed Ti plasmid vector system for plant transformation. Bio Technology 3:629–635; 1985.

    Google Scholar 

  11. Haughn G. W.; Smith, J.; Mazur, B., et al. Transformation with a mutantArabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. & Gen. Genet. 211:266–271; 1988.

    Google Scholar 

  12. Herrera-Estrella, L.; De Block, M.; Masens, E., et al. Chimeric genes as dominant selectable markers in plant cells. EMBO J. 2:987–995; 1983.

    Google Scholar 

  13. Herrera-Estrella, L.; Depicker, A.; Van Montagu, M., et al. Expression of chimeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–213; 1983.

    Google Scholar 

  14. Horsch, R. B.; Fry, J. E.; Hoffmann, N. L., et al. A simple and general method for transferring genes into plants. Science 227:1229–1230; 1985.

    Google Scholar 

  15. Jefferson, R. A.; Kavanagh, T. A.; Bevan, M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901–3907; 1987.

    PubMed  Google Scholar 

  16. Klee H.; Horsch R.; Rogers S.Agrobacterium-mediated plant transformation and its further applications to plant biology. Ann. Rev. Plant Physiol. 38:467–486; 1987.

    Google Scholar 

  17. Konez, C.; Olsson, O.; Langridge, W. H. R., et al. Assembly and functional bacterial luciferase in plants. Proc. Natl. Acad. Sci. USA 84:131–135; 1987.

    Google Scholar 

  18. Lloyd, A. M.; Barnason, A. R.; Rogers, S. G., et al. Transformation ofArabidopsis thaliana withAgrobacterium tumefaciens. Nature 234:464–466; 1986.

    Google Scholar 

  19. Meyer, P.; Walgenbach, E. E.; Bussmann, K., et al. Synchronized tobacco protoplasts are efficiently transformed by DNA. Mol. & Gen. Genet. 199:269–276; 1985.

    Google Scholar 

  20. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Google Scholar 

  21. Nester, E. W.; Gordon M. P.; Amasino, R. M., et al. Crown gall: a molecular and physiological analysis. Ann. Rev. Plant Physiol. 35:387–413; 1984.

    Google Scholar 

  22. Ow, D. W.; Wood, K. V.; Deluca, M., et al. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234:856–859; 1986.

    Google Scholar 

  23. Rogers, S. G.; Klee, H.; Horsch, R. B., et al. Use of cointegrating Ti plasmid vectors. Plant. Mol. Biol. Man. A2:1–12; 1988.

    Google Scholar 

  24. Shah, D. M.; Horsch, R. B.; Klee, H. J., et al. Engineering herbicide tolerance into transgenic plants. Science 233:478–481; 1986.

    Google Scholar 

  25. Simpson, R. B.; Spielmann, A.; Margossian, L., et al. A disarmed binary vector fromAgrobacterium tumefaciens functions inAgrobacterium rhizogenes. Plant Mol. Biol. 6:403–415; 1986.

    Google Scholar 

  26. Stachel, S. E.; Messens, E.; Van Montagu, M., et al. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer inAgrobacterium tumefaciens. Nature 318:624–629; 1985.

    Google Scholar 

  27. Stachel, S. E.; Nester, E. W.; Zambryski, P. C. A plant cell factor inducesAgrobacterium tumefaciens vir gene expression. Proc. Natl. Acad. Sci. USA 83:379–383; 1986.

    Google Scholar 

  28. Stachel, S. E.; Zambryski, P.Agrobacterium tumefaciens and the susceptible plant cell: a novel adaptation of extracellular recognition and DNA conjugation. Cell 47:155–157; 1986.

    PubMed  Google Scholar 

  29. Van den Elzen, P. J. M.; Townsend, J.; Lee, K. L., et al. A chimeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol. Biol. 5:299–302; 1985.

    Google Scholar 

  30. Van Larebeke, G.; Engler, G.; Holsters, M., et al. Large plasmid inAgrobacterium tumefaciens is essential for crown gall-inducing ability. Nature 252:169–170; 1974.

    PubMed  Google Scholar 

  31. Watson, B.; Currier, T. C.; Gordon, M. P., et al. Plasmid required for virulence ofAgrobacterium tumefaciens. J. Bacteriol 123:255–264; 1975.

    PubMed  Google Scholar 

  32. Willmitzer, L.; DeBeuckeleer, M.; Lemmers, M., et al. DNA from Ti plasmid is present in the nucleus and absent from plastids of plant crown-gall cells. Nature 287:359–361; 1980.

    Google Scholar 

  33. Winans, S. C.; Kerstetter R. A.; Nester, E. W. Transcriptional regulation of the virA and virG genes ofAgrobacterium tumefaciens. J. Bacteriol 170:4047–4054; 1988.

    PubMed  Google Scholar 

  34. Zambryski, P.; Tempe, J.; Schell, J. Transfer and function of T-DNA genes fromAgrobacterium Ti and Ri plasmids in plants. Cell 56:193–201; 1989.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bottino, P.J., Raineri, D., Nester, E.W. et al. Agrobacterium-mediated DNA transfer. Journal of Tissue Culture Methods 12, 135–138 (1989). https://doi.org/10.1007/BF01404439

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01404439

Key words

Navigation