Skip to main content
Log in

Continued fractions associated with the Newton-Padé table

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

We discuss first the block structure of the Newton-Padé table (or, rational interpolation table) corresponding to the double sequence of rational interpolants for the data{(z k, h(zk)} k =0. (The (m, n)-entry of this table is the rational function of type (m,n) solving the linearized rational interpolation problem on the firstm+n+1 data.) We then construct continued fractions that are associated with either a diagonal or two adjacent diagonals of this Newton-Padé table in such a way that the convergents of the continued fractions are equal to the distinct entries on this diagonal or this pair of diagonals, respectively. The resulting continued fractions are generalizations of Thiele fractions and of Magnus'sP-fractions. A discussion of an some new results on related algorithms of Werner and Graves-Morris and Hopkins are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arndt, H.: Ein verallgemeinerter Kettenbruch-Algorithmus zur rationalen Hermite-Interpolation. Numer. Math.36, 99–107 (1980)

    Google Scholar 

  2. Bultheel, A.: Recursive algorithms for nonnormal Padé tables. SIAM J. Appl. Math.39, 106–118 (1980)

    Google Scholar 

  3. Claessens, G.: On the structure of the Newton-Padé table. J. Approximation Theory22, 304–319 (1978)

    Google Scholar 

  4. Claessens, G., Wuytack, L.: On the computation of non-normal Padé approximants. J. Comput. Appl. Math.5, 283–289 (1979)

    Google Scholar 

  5. Baker Jr, G.A., Graves-Morris, P.: Padé approximants. Part II: Extensions and applications, 1st Ed., Reading, Mass: Addison-Wesley 1981

    Google Scholar 

  6. Gallucci, M.A., Jones, W.B.: Rational approximations corresponding to Newton series (Newton-Padé approximants). J. Approximation Theory17, 366–392 (1976)

    Google Scholar 

  7. Gragg, W.B.: The Padé table and its relation to certain algorithms of numerical analysis. SIAM Rev.14, 1–62 (1972)

    Google Scholar 

  8. Graves-Morris, P.R.: Practical, reliable, rational interpolation. J. Inst. Maths. Applics.25, 267–286 (1980)

    Google Scholar 

  9. Graves-Morris, P.R., Hopkins, T.R.: Reliable rational interpolation. Numer. Math.36, 111–128 (1981)

    Google Scholar 

  10. Gutknecht, M.H.: The rational interpolation problem revisited. Rocky Mountain J. Math. (to appear)

  11. Jones, W.B., Thron, W.J.: Continued fractions. Analytic theory and applications, 1st Ed., Reading, Mass: Addison-Wesley 1980

    Google Scholar 

  12. Machly, H., Witzgall, C.: Tschebyscheff-Approximationen in kleinen Intervallen II, Stetigkeitssätze für gebrochen rationale Approximationen. Numer. Math.2, 293–307 (1960)

    Google Scholar 

  13. Magnus, A.: Certain continued fractions associated with the Padé table. Math. Z.78, 361–374 (1962)

    Google Scholar 

  14. Magnus, A.: Expansion of power series intoP-fractions. Math. Z.80, 209–216 (1962)

    Google Scholar 

  15. Meinguet, J.: On the solubility of the Cauchy interpolation problem. In: Talbot, A. (ed.) Approximation theory, pp. 137–163. London New York: Academic Press 1970

    Google Scholar 

  16. Thacher, H.C., Tukey, J.: Rational interpolation made easy by a recursive algorithm. 1960 (unpublished manuscript)

  17. Warner, D.D.: Hermite interpolation with rational functions. PhD thesis, University of California at San Diego 1974

  18. Werner, H.: Algorithm 51: A reliable and numerically stable program for rational interpolation in Lagrange data. Computing31, 269–286 (1983)

    Google Scholar 

  19. Werner, H.: Ein Algorithmus zur rationalen Interpolation. In: Collatz, L., Meinardus, G., Werner, H. (eds.) Numerische Methoden der Approximationstheorie, Bd. 5, pp. 319–337. Basel Stuttgart: Birkhäuser 1980

    Google Scholar 

  20. Werner, H.: A reliable method for rational interpolation. In: Wuytack, L. (ed.) Padé approximation and its applications, pp. 257–277. Heidelberg Berlin New York: Springer 1979

    Google Scholar 

  21. Wuytack, L.: On some aspects of the rational interpolation problem. SIAM J. Numer. Anal.11, 52–59 (1974)

    Google Scholar 

  22. Wuytack, L.: On the osculatory rational interpolation problem. Math. Comput.29, 837–843 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Helmut Werner (1931–1985)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutknecht, M.H. Continued fractions associated with the Newton-Padé table. Numer. Math. 56, 547–589 (1989). https://doi.org/10.1007/BF01396344

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01396344

Subjection Classifications

Navigation