Skip to main content
Log in

Contractivity in the numerical solution of initial value problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

Consider a linear autonomous system of ordinary differential equations with the property that the norm |U(t)| of each solutionU(t) satisfies |U(t)|≦|U(0)| (t≧0). We call a numerical process for solving such a system contractive if a discrete version of this property holds for the numerical approximations. A givenk-step method is said to be unconditionally contractive if for each stepsizeh>0 the numerical process is contractive.

In this paper a general theory is given which yields necessary and sufficient conditions for unconditional contractivity. It turns out that unconditionally contractive methods are subject to an order barrierp≦1. Further the concept of a contractivity threshold is studied, which makes it possible to compare the contractivity behaviour of methods with an orderp>1 as well.

Most theoretical results in this paper are formulated for differential equations in arbitrary Banach spaces. Applications are given to numerical methods for solving ordinary as well as partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bolley, C., Crouzeix, M.: Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques. R.A.I.R.O. Analyse Numérique12, 237–245 (1978)

    Google Scholar 

  2. Brenner, P., Thomée, V.: On rational approximations of semigroups. SIAM J. Numer. Anal.16, 683–694 (1979)

    Google Scholar 

  3. Burrage, K., Butcher, J.C.: Stability criteria for implicit Runge-Kutta methods. SIAM J. Numer. Anal.16, 46–57 (1979)

    Google Scholar 

  4. Crouzeix, M.: Sur laB-stabilité des méthodes de Runge-Kutta. Numer. Math.32, 75–82 (1979)

    Google Scholar 

  5. Dahlquist, G., Jeltsch, R.: Generalized disks of contractivity for explicit and implicit Runge-Kutta methods. Report TRITA-NA-7906. Dept. Comp. Sci., Roy. Inst. of Techn., Stockholm 1979

    Google Scholar 

  6. Dunford, N., Schwartz, J.T.: Linear operators, Part I. New York: Interscience Publishers, Inc. 1958

    Google Scholar 

  7. Iserles, A.: Private communication (1980)

  8. Jeltsch, R., Nevanlinna, O.: Stability of explicit time discretizations for solving initial value problems. Numer. Math.37, 61–69 (1981)

    Google Scholar 

  9. Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966

    Google Scholar 

  10. Martin, R.H.: Nonlinear operators and differential equations in Banach spaces. New York: J. Wiley and Sons 1976

    Google Scholar 

  11. Mitchell, A.R., Griffiths, D.F.: The finite difference method in partial differential equations. Chichester: John Wiley and Sons 1980

    Google Scholar 

  12. Nevanlinna, O., Liniger, W.: Contractive methods for stiff differential equations. BIT18, 457–474 (1978); BIT19, 53–72 (1979)

    Google Scholar 

  13. Nørsett, S.P.: Restricted Padé approximations to the exponential function. SIAM J. Numer. Anal.15, 1008–1029 (1978)

    Google Scholar 

  14. Rektorys, K.: Solution of mixed boundary value problems by the method of discretization in time. In: Numerische Behandlung von Differentialgleichungen Band 3. Albrecht, J., Collatz, L. (eds.). pp. 132–145, Basel: Birkhäuser Verlag 1981

    Google Scholar 

  15. Rickart, C.E.: General theory of Banach algebras. New York: Van Nostrand 1960

    Google Scholar 

  16. Rothe, E.: Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben. Math. Anal.102, 650–670 (1930)

    Google Scholar 

  17. Spijker, M.N.: Contractivity of Runge-Kutta methods. In: Numerical methods for solving stiff initial value problems. Proceedings, Oberwolfach, 28.6.–4.7.1981. Dahlquist, G., Jeltsch, R. (eds.). Institut für Geometrie und Praktische Mathematik der RWTH Aachen, Bericht Nr. 9, 1981

  18. Stetter, H.J.: Analysis of discretization methods for ordinary differential equations. Berlin, Heidelberg, New York: Springer 1973

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spijker, M.N. Contractivity in the numerical solution of initial value problems. Numer. Math. 42, 271–290 (1983). https://doi.org/10.1007/BF01389573

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01389573

Subject Classifications

Navigation