Skip to main content
Log in

Heat transfer to reattached fluid flow downstream of a fence

Wärmeübergang an ein sich stromabwärts eines Hindernisses wieder anlegendes Fluid

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

In this paper we present heat transfer experiments performed at the reattachment of turbulent flows of fluids (Pr= 0.7 and 84) over surface-protruding fences of various heights. The location of the heat transfer maximum was found to depend onPr. The reattachment influences the thickness of the near-wall viscous layer, in which the universal velocity and temperature distribution is preserved.

Zusammenfassung

In diesem Aufsatz werden Wärmeübertragungsexperimente vorgestellt, die im Bereich der sich wieder anlegenden turbulenten Strömung mit Fluiden der Prandtl-Zahlen zwischen 0,7 und 84 hinter aus der Heizfläche ragenden Hindernissen unterschiedlichen Höhen vorgestellt. Es zeigte sich, daß das Maximum des Wärmeübergangs von der Prandtl-Zahl abhängt. Das Wiederanlegen beeinflußt die Dicke der viskosenwandnahen Schicht innerhalb derer die Verteilung von Geschwindigkeit und Temperatur bewahrt wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

fence width

C f :

surface friction coefficient,\(2\tau _w /\varrho u_\infty ^2 \)

h :

fence height

l :

mixing length

m, n :

power indices in Eq. (5)

q :

relative heat flux

T :

temperature

u, v :

velocity components

Tu :

turbulence level,\(\sqrt {u'^2 /u_\infty } \)

u * :

dynamic velocity,\(\sqrt {\tau _w /\varrho } \)

x :

distance from the fence

x r :

reattachment length

x m :

distance between the fence and position ofα m

y :

distance from the wall

Nu h :

Nusselt number,α h/λ

Pr :

Prandtl number, μc p

Re h :

Reynolds number,u h h/v

St :

Stanton number,\(q_w /\varrho u_\infty c_p (T_w - T_\infty )\)

α :

heat transfer coefficient

δ :

boundary layer thickness

δ** :

momentum thickness

ζ * :

reference temperature,\(q_w /\varrho c_p u_* \)

χ :

universal constant

λ :

fluid thermal conductivity

μ :

fluid dynamic viscosity

ν :

fluid kinematic viscosity, μ/g9

ϱ :

fluid density

τ :

shear stress

8:

free stream

0:

condition without fence

w :

condition on the wall

m :

maximum value

h :

based on the fence height

References

  1. Bergles, A.: Augmentation of forced-convection heat transfer. In: Turbulent Forced Convection in Channels and Bundles (Eds. S. Kakac, D. B. Spalding). Washington: Hemisphere 1978

    Google Scholar 

  2. Dalle Donne: Convective heat transfer from rough surfaces. (See[l])

    Google Scholar 

  3. Kalinin, E. K.; Dreitser, G. A.; Yarkho, S. A.: Intensifikatsya Teploobmena v Kanalakh. Heat Transfer Augmentation in Channels. Moskow: Mashynostroyenye 1981

    Google Scholar 

  4. Eaton, J. K.; Johnston, J. P.: A review of research on subsonic turbulent flow reattachment. A.I.A.A. J. 19 (1981) 1093–1100

    Google Scholar 

  5. Simpson, R. L.: A review of some phenomena in turbulent flow separation. Trans. Am. Soc. mech. Engrs. J. Basic Eng. 103 (1981) 1001–1012

    Google Scholar 

  6. Back, L. H.; Roschke, E. I.: Shear-layer flow regimes and wave instabilities and reattachment length downstream of an abrupt circular channel expansion. Trans. Am. Soc. mech. Engrs, J. Appl. Mech. 94 (1972) 677–681

    Google Scholar 

  7. Šležas, R. B.: Issledovanya struktury turbulentnogo pogranichnogo sloya pri obtekanii vystupa na plastine. A study of the turbulent boundary layer over a fence on a plate. In: Hidrodinamika i Akustika Odno-i Dvukhfaznykh Potokov (Ed. Shreiber, I. R.). Novosibirsk 1984

  8. Yaglom, A. M.; Kader, B. A.: Heat and mass transfer between a rough wall and turbulent fluid flow at high Reynolds and Peclett numbers. J. Fluid Mech. 62 (1974) 601–623

    Google Scholar 

  9. Aung, W.; Watkins, C. B.: Heat transfer mechanisms in separated forced convection. (See [1])

    Google Scholar 

  10. Spalding, D. B.: Heat transfer from turbulent separated flows. J. Fluid Mech. 27 (1967) 97–109

    Google Scholar 

  11. Žukauskas, A.; Šlančiauskas, A.; Pedišius, A.: Heat transfer in a turbulent boundary layer behind a two-dimensional bluff body at differentPr numbers. Proc. 7th Int. Heat Transfer Conf., München. 5 (1982) 217–222

    Google Scholar 

  12. Žukauskas, A.; Šlančiauskas, A.: Teplootdacha v Turbulentnom Potoke Zhidkosti. Heat Transfer in Turbulent Fluid Flow. Vilnius: Mintis 1973

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr.-Ing. U. Grigull's 75th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Žukauskas, A., Pedišius, A. Heat transfer to reattached fluid flow downstream of a fence. Wärme- und Stoffübertragung 21, 125–131 (1987). https://doi.org/10.1007/BF01377568

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01377568

Keywords

Navigation