Skip to main content
Log in

Species differences in molybdenum and vanadium requirements and combined nitrogen utilization byAzotobacteriaceae

  • Published:
Plant and Soil Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Allison, R. M. and Burris, R. H., Kinetics of fixation byAzotobacter vinelandii, J. Biol. Chem.224, 351–364 (1957).

    PubMed  Google Scholar 

  2. Anderson, A. J., Molybdenum deficiencies in legumes in Australia. Soil Sci.81, 173–182 (1956).

    Google Scholar 

  3. Anderson, A. J., The role of molybdenum in plant nutrition.In: Inorganic Nitrogen Metabolism, Ed. W. D. McElroy and B. Glass, Johns Hopkins Presss, Baltimore, 1–58 (1956).

    Google Scholar 

  4. Anderson, A. J. and Moye, D. V., Lime and molybdenum in clover development on acid soils. Australian J. Agr. Research3, 95–110 (1952).

    Google Scholar 

  5. Balks, R. and Reekers, J., Bestimmung des Nitrat- und Ammoniakstickstoffs im Boden. Landwirtsch. Forsch.8, 7–13 (1955).

    Google Scholar 

  6. Becking, J. H., Studies on nitrogen-fixing bacteria of the genusBeijerinckia. I. Geographical and ecological distribution in soils. Plant and Soil14, 49–81 (1961).

    Google Scholar 

  7. Becking, J. H., Studies on the nitrogen-fixing bacteria of the genusBeijerinckia. II. Mineral nutrition and resistance to high levels of certain elements in relation to soil type. Plant and Soil14, 297–322 (1961).

    Google Scholar 

  8. Beijerinck, M. W., Ueber oligonitrophile Mikroben. Centr. Bakteriol. Parasitenk. Abt. II,7, 561–582 (1901).

    Google Scholar 

  9. Birch-Hirschfeld, L., Ueber den Einfluss von Molybdän und Bodenextraktstoffen auf die N-Bindung vonAzotobacter chroococcum. Arch. Mikrobiol.3, 341–361 (1932).

    Google Scholar 

  10. Bortels, H., Molybdän als Katalysator bei der biologischen Stickstoffbindung. Arch. Mikrobiol.1, 333–342 (1930).

    Google Scholar 

  11. Bortels, H., Weitere Untersuchungen über die Bedeutung von Molybdän, Vanadium, Wolfram und andere Erdaschenstoffen für stickstoffbindende und andere Mikroorganismen. Zentr. Bakteriol. Parasitenk. Abt. II95, 193–218 (1936).

    Google Scholar 

  12. Burema, S. J. and Wieringa, K. T., Molybdenum as a growth factor ofAzotobacter chroococcum. Antonie van Leeuwenhoek, J. Microbiol. Serol.8, 123–133 (1942).

    Google Scholar 

  13. Burma, D. P. and Burris, R. H., Kinetics of ammonia utilization byAzotobacter vinelandii. J. Biol. Chem.225, 297–295 (1951).

    Google Scholar 

  14. Burma, D. P. and Burris, R. H., Metabolism of nitrogen by cell-free preparations fromAzotobacter vinelandii. J. Biol. Chem.225, 723–733 (1957).

    PubMed  Google Scholar 

  15. Burk, D. and Horner, C. K., The specific catalytic role of molybdenum and vanadium in nitrogen fixation and amide utilization by Azotobacter. Trans. 3rd Intern. Soil Sci. Congr. New Brunswick1939, 152–155 (1939).

    Google Scholar 

  16. Burris, R. H., Distribution of isotopic nitrogen inAzotobacter vinelandii. J. Biol. Chem.143, 509–517 (1942).

    Google Scholar 

  17. Cheniae, G. and Evans, H. J., Nitrate reductase from the nodules of leguminous plants.In: Inorganic Nitrogen Metabolism, Ed. W. D. McElroy and B. Glass, Johns Hopkins Press, Baltimore, 184–188 (1956).

    Google Scholar 

  18. Cheniae, G. and Evans, H. J., On the relation between nitrogen fixation and nodule-nitrate reductase of soybean root nodules. Biochim. et Biophys. Acta26, 654–655 (1957).

    Google Scholar 

  19. Cheniae, G. and Evans, H. J., Physiological studies on nodule-nitrate reductase. Plant Physiol.35, 454–462 (1960).

    Google Scholar 

  20. Derx, H. G.,Beijerinckia, a new genus of nitrogen-fixing bacteria occurring in tropical soils. Proc. Konink. Ned. Akad. Wetenschap. Amsterdam, Ser. C.53, 140–147 (1950).

    Google Scholar 

  21. Derx, H. G., Further researches onBeijerinckia. Annales Bogoriensis1, 1–11 (1950).

    Google Scholar 

  22. Derx, H. G.,Azotobacter insigne spec. nov., fixateur d'azote à flagellation polaire. Proc. Konink. Ned. Akad. Wetenschap. Amsterdam, Ser. C.54, 342–350 (1951).

    Google Scholar 

  23. Döbereiner, J. and Ruschel, A. P., Uma nova espécie deBeijerinckia. Rev. Brasil Biologia1, 261–272 (1958).

    Google Scholar 

  24. Gest, H., Judis, J. and Peck, H. D. Jr., Reduction of molecular nitrogen and relationships with photosynthesis and hydrogen metabolism.In: Inorganic Nitrogen Metabolism, Ed. W. D. McElroy and B. Glass, Johns Hopkins Press, Baltimore, 298–315 (1956).

    Google Scholar 

  25. Green, M. and Wilson, P. W., The utilization of nitrate nitrogen by Azotobacter. J. Gen. Microbiol.9, 89–96 (1953).

    PubMed  Google Scholar 

  26. Hewitt, E. J. and Hallas, D. G., The use ofAspergillus niger (van Tiegh.) M strain as a test organism in the study of molybdenum as a plant nutrient. Plant and Soil3, 366–408 (1951).

    Google Scholar 

  27. Hofer, A. W., FamilyAzotobacteriaceae.In: Bergey's Manual of Determinative Bacteriology, Williams and Wilkins Co., Baltimore, 7th Ed., 283–285 (1957).

    Google Scholar 

  28. Horner, C. K. and Allison, F. E., Utilization of fixed nitrogen by Azotobacter and influence on nitrogen fixation. J. Bacteriol.47, 1–14 (1944).

    Google Scholar 

  29. Horner, C. K., Burk, D., Allison, F. E. and Sherman, M. S., Nitrogen fixation by Azotobacter as influenced by molybdenum and vanadium. J. Agr. Research65, 173–193 (1942).

    Google Scholar 

  30. Jensen, H. L., The influence of molybdenum, calcium and agar on nitrogen fixation byAzotobacter indicum. Proc. Linnean Soc. N.S. Wales72, 299–310 (1948).

    Google Scholar 

  31. Jensen, H. L., The magnesium requirements ofAzotobacter andBeijerinckia with some additional notes on the latter genus. Acta Agr. Scand.4, 224–236 (1954).

    Google Scholar 

  32. Kauffmann, J. and Toussaint, P., Un nouveau germe fixateur de l'azote atmosphérique:Azotobacter lacticogenes. Rev. Gén. Botan.58, 553–561 (1951).

    Google Scholar 

  33. Kluyver, A. J. and Van Reenen, W. J., UeberAzotobacter agilis Beijerinck. Arch. Mikrobiol.4, 280–300 (1933).

    Google Scholar 

  34. Kluyver, A. J. and Van den Bout, M. T., Notiz überAzotobacter agilis Beijerinck. Arch. Mikrobiol.7, 261–263 (1936).

    Google Scholar 

  35. Kovats, J., Ueber den Einfluss von Eisen und Molybdän auf die Stickstoffbindung durch Azotobacter in Gegenwart von Humussubstanzen oder von deren Aschen. Bull. intern. acad. polon. sci., Classe sci. math. nat., Cracovie. Sér. B I.1938 91–112 (1938).

    Google Scholar 

  36. Krzemieniewski, S. and Kovats, J., Ueber den Einfluss von Eisen und Molybdän auf die Stickstoffbindung durchAzotobacter chroococcum Beij. Bull. intern. acad. polon. sci., Classe sci. math. nat., Cracovie. Sér. B I.1936 169–195 (1937).

    Google Scholar 

  37. Lipman, J. G., Experiments on the transformation and fixation of nitrogen by bacteria. Rept. Agr. Exp. Sta. New Jersey24, 217–285 (1903).

    Google Scholar 

  38. Lipman, J. G., Soil bacteriological studies. Further contributions to the physiology and morphology of members of the Azotobacter group. Rept. Agr. Exp. Sta. New Jersey25, 237–289 (1904).

    Google Scholar 

  39. Mulder, E. G., Importance of molybdenum in the nitrogen metabolism of micro-organisms and higher plants. Plant and Soil1, 94–119 (1948).

    Google Scholar 

  40. Mulder, E. G., Bakema, K., and Van Veen, W. L., Molybdenum in symbiotic nitrogen fixation and in nitrate assimilation. Plant and Soil10, 319–334 (1959).

    Google Scholar 

  41. Nason, A., Enzymatic steps on the assimilation of nitrate and nitrite in fungi and green plant.In: Inorganic Nitrogen Metabolism, Ed. W. D. McElroy and B. Glass, Johns Hopkins Press, Baltimore, 109–136 (1956).

    Google Scholar 

  42. Nason, A., The function of metals in enzyme systems. Soil Sci.85, 63–77 (1958).

    Google Scholar 

  43. Nason, A. and Evans, H. J., Triphosphopyridine nucleotide-nitrate reductase inNeurospora. J. Biol. Chem.202, 655–673 (1953).

    PubMed  Google Scholar 

  44. Nicholas, D. J. D., The use of fungi for determining trace metals in biological materials. Analyst77, 629–642 (1952).

    Google Scholar 

  45. Nicholas, D. J. D., Metallo-enzymes in nitrate assimilation of plants, with special reference to micro-organisms.In: Utilization of nitrogen and its compounds by plants. Symposium13, Soc. Exptl. Biol., Cambridge Univ. Press, 1–23 (1959).

  46. Nicholas, D. J. D. and Fielding, A. H., The use ofAspergillus niger (M) for the determination of magnesium, zinc, copper and molybdenum available in soils to crop plants. J. Hort. Sci.26, 125–147 (1951).

    Google Scholar 

  47. Norris, J. R. and Jensen, H. L., Calcium requirements of Azotobacter. Arch. Mikrobiol.31, 198–205 (1958).

    Google Scholar 

  48. Romijn, G., De colorimetrische bepaling van het salpeterigzuur. Chem. Weekblad11, 1115–1116 (1914).

    Google Scholar 

  49. Schoorl, N., Suiker-titratie. Chem. Weekblad26, 130–134 (1929).

    Google Scholar 

  50. Schröder, M., Die Assimilation des Luftstickstoffs durch einige Bakterien. Zentr. Bakteriol. Parasitenk. Abt. II85, 177–212 (1932).

    Google Scholar 

  51. Starkey, R. L., The influence of reaction upon the development of an acid-tolerant Azotobacter. Trans. 3rd Intern. Soil Sci. Congr. New Brunswick1939 142–150 (1939).

    Google Scholar 

  52. Starkey, R. L. and De, P. K., A new species of Azotobacter. Soil Sci.47, 329–343 (1939).

    Google Scholar 

  53. Van Niel, C. B., A note on the apparent absence of Azotobacter in soils. Arch. Mikrobiol.6, 215–218 (1935).

    Google Scholar 

  54. Virtanen, A. I., Biological nitrogen fixation. Proc. 3rd Intern. Congr. Biochemistry, Brussels, 425–433 (1955).

  55. Virtanen, A. I., Importance of oligoelements in nitrogen-fixing organisms. Semaine d'étude sur le problème des oligoéléments dans la vie végétale et animale. Pontif. Acad. Sci. Scripta Varia14, 83–103 (1956).

    Google Scholar 

  56. Virtanen, A. I. and Laine, T., Biological synthesis of amino acids from atmospheric nitrogen. Nature141, 748–749 (1938).

    Google Scholar 

  57. Virtanen, A. I. and Laine, T., Biological nitrogen fixation. Nature142, 165 (1938).

    Google Scholar 

  58. Wilson, P. W., The comparative biochemistry of nitrogen fixation. Advances in Enzymol.13, 345–375 (1952).

    Google Scholar 

  59. Winogradsky, S., Études sur la microbiologie du sol et des eaux. Sur la morphologie et l'oecologie des Azotobacter. Ann. inst. Pasteur60, 351–400 (1938).

    Google Scholar 

  60. Yuen, S. H. and Pollard, A. G., Determination of nitrogen in soil and plant materials: Use of boric acid in the micro-Kjeldahl method. J. Sci. Food Agr.4, 490–496 (1953).

    Google Scholar 

  61. Zelitch, I., Wilson, P. W. and Burris, R. H., The amino acid composition and distribution of N15 in soybean root nodules supplied with N15-enriched N2. Plant Physiol.27, 1–8 (1952).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becking, J.H. Species differences in molybdenum and vanadium requirements and combined nitrogen utilization byAzotobacteriaceae . Plant Soil 16, 171–201 (1962). https://doi.org/10.1007/BF01377215

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01377215

Keywords

Navigation