Skip to main content
Log in

On the zeros of discrete-time linear periodic systems

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Discrete-time linear periodic single-input/single-output (SISO) systems having uniform relative degree are considered. A closed-form expression of the blocking input is derived and exploited to obtain a computationally advantageous characterization of the structural zeros. Indeed, it suffices to compute the eigenvalues of a suitably defined (n × n) matrix, wheren is the system order. It is shown that, in contrast to the general case studied in previous papers, the number of zeros of linear periodic SISO systems with uniform relative degree is always time invariant and equal to the difference between the system order and the relative degree. The new characterization is also used to provide a simple expression for the zeros of linear periodic systems described by input-output difference equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bittanti, Deterministic and stochastic linear periodic systems, inTime Series and Linear Systems, S. Bittanti, ed., Springer-Verlag, Berlin and New York, 1986, pp. 141–182.

    Google Scholar 

  2. S. Bittanti and P. Bolzern, Discrete time linear periodic systems: Gramian and modal criteria for reachability and controllability,International J. Control 41, 909–928, 1985.

    Google Scholar 

  3. S. Bittanti and P. Bolzern, On the structure theory of discrete-time linear systems,Int. J. Systems Science 17, 33–47, 1986.

    Google Scholar 

  4. S. Bittanti, P. Bolzern, and P. Colaneri, The extended periodic Lyapunov lemma,Automatica 5, 603–605, 1985.

    Google Scholar 

  5. S. Bittanti, P. Bolzern, and G. Guardabassi, Some critical issues on the state-representation of time-varying ARMA models,IFAC Symp. Identification and System Parameter Estimation, York, U.K., 1479–1483, 1985.

  6. S. Bittanti, P. Colaneri, and G. De Nicolao, The difference periodic Riccatti equation for the periodic prediction problem,IEEE Trans. on Automatic Control AC-33, 706–712, 1988.

    Google Scholar 

  7. P. Bolzern, P. Colaneri, and R. Scattolini, Zeros of discrete-time linear periodic systems,IEEE Trans. on Automatic Control AC-31, 1057–1058, 1986.

    Google Scholar 

  8. P. Colaneri, R. Scattolini, and N. Schiavoni, LQG optimal control of multirate sampled-data systems,IEEE Trans. on Automatic Control AC-37, 675–682, 1992.

    Google Scholar 

  9. G. Conte, A. M. Perdon, and S. Longhi, Zero structure at infinity of linear periodic systems,J. Circuits Systems Signal Process.10, 91–100, 1991.

    Google Scholar 

  10. W. A. Gardner, ed., Special issue on cyclostationary signals,IEEE Signal Processing Magazine 8, 2, 1991.

    Google Scholar 

  11. W. A. Gardner, ed.,Cyclostationarity in Communications and Signal Processing, IEEE Press, New York, 1994.

    Google Scholar 

  12. O. M. Grasselli, A canonical decomposition of linear periodic discrete-time systems,International J. Control 40, 201–214, 1984.

    Google Scholar 

  13. O. M. Grasselli and F. Lampariello, Dead-beat control of linear periodic discrete-time systems,International J. Control 33, 1091–1106, 1981.

    Google Scholar 

  14. O. M. Grasselli and S. Longhi, Disturbance localization with dead-beat control for linear periodic discrete-time systems.International J. Control 44, 1319–1347, 1986.

    Google Scholar 

  15. O. M. Grasselli and S. Longhi, Zeros and poles of linear periodic multivariable discrete-time systems,J. Circuits Systems Signal Process. 7, 361–380, 1988.

    Google Scholar 

  16. R. E. Kalman, Canonical structure of linear dynamical systems,Proc. Nat. Acad. Sci. U.S.A. 48, 569–600, 1962.

    Google Scholar 

  17. D. Malah and B. A. Shenoi, Reduction and transformation of linear discrete-time-varying systems,International J. Control 16, 1127–1136, 1972.

    Google Scholar 

  18. A. G. Miamee, On recent developments in prediction theory for cyclostationary processes, inCyclostationarity in Communications and Signal Processing, IEEE Press, New York, 480–493, 1994.

    Google Scholar 

  19. S. Pinzoni, Stabilization and control of linear time-varying systems, Ph.D. thesis, Arizona State University, Tempe, AZ, 1989.

    Google Scholar 

  20. R. G. Shenoy, D. Burnside, and T. W. Parks, Linear periodic systems and multirate filter design,IEEE Trans. on Signal Processing SP-42, no. 9, 2242–2255, 1994.

    Google Scholar 

  21. W. Y. Yan, B. D. O. Anderson, and R. R. Bitmead, On the gain margin improvement using dynamic compensation based on generalized sampled-data hold functions,IEEE Trans. on Automatic Control AC-39, 2347–2354, 1994.

    Google Scholar 

  22. C. Yang and P. T. Kabamba, Multi-channel output gain margin improvement using generalized sampled-data hold functions,IEEE Trans. on Automatic Control AC-39, 661–675, 1994.

    Google Scholar 

  23. K. S. Yeung and Y. J. Huang, On the determination of zeros of a SISO system,IEEE Trans. on Automatic Control AC-34, 475–476, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper has been partially supported by MURST Project Model Identification, System Control, Signal Processing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Nicolao, G., Trecate, G.F. On the zeros of discrete-time linear periodic systems. Circuits Systems and Signal Process 16, 703–718 (1997). https://doi.org/10.1007/BF01371573

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01371573

Keywords

Navigation