Skip to main content
Log in

Equidistribution and Brownian motion on the Sierpiński gasket

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We introduce several concepts of discrepancy for sequences on the Sierpiński gasket. Furthermore a law of iterated logarithm for the discrepancy of trajectories of Brownian motion is proved. The main tools for this result are regularity properties of the heat kernel on the Sierpiński gasket. Some of the results can be generalized to arbitrary nested fractals in the sense of T. Lindstrøm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlow MT, Bass RF (1993) Coupling and Harnack inequalities for Sierpiński carpets. Bull Amer Math Soc29: 208–212

    Google Scholar 

  2. Barlow MT, Perkins EA (1988) Brownian motion on the Sierpiński gasket. Probab Th Re Fields79: 543–623

    Google Scholar 

  3. Beck J, Chen W (1987) Irregularities of Distribution. Cambridge: Univ Press

    Google Scholar 

  4. Berndt B (1989) Ramanujan's Notebooks, Part II. Berlin Heidelberg New York: Springer

    Google Scholar 

  5. Blümlinger M (1989) Sample Path Properties of Diffusion Processes on Compact Manifolds. In:Hlawka E andTichy RE (eds.) Number-Theoretic Analysis Lect Notes Math 1452, pp. 6–19

  6. Blümlinger M, Drmota M, Tichy RF (1989) A uniform law of the iterated logarithm for Brownian motion on compact Riemannian manifolds. Math Z201: 495–507

    Google Scholar 

  7. Cuoco AA (1991) Visualizing the p-adic integers. Amer Math Monthly98: 355–364

    Google Scholar 

  8. Dobrushin RL, Kusuoka S (1993) Statistical, Mechanics and Fractals. Lect Notes Math 1567

  9. Drmota M, Tichy RF (1988) C-uniform distribution on compact metric spaces. J Math Anal Appl129: 284–292

    Google Scholar 

  10. Elworthy KD, Ikeda N (1993) Asymptotic Problems in Probability Theory: Stochastic Model and Diffusions on Fractals. Pitman Res Notes Math 283

  11. Falconer KJ (1985) The Geometry of Fractals Sets. Cambridge: Univ Press

    Google Scholar 

  12. Flajolet P, Grabner PJ, Krischenhofer P, Prodinger H, Tichy RF (1994) Mellin transforms and asymptotics: digital sums. Theor Comput Sci123: 291–314

    Google Scholar 

  13. Fleischer W (1971) Das Wienersche Maß einer gewissen Menge von Vektorfunktionen, Mh Math75: 193–197

    Google Scholar 

  14. Fukushima M, Shima T (1992) On a spectral analysis for the Sierpiński gasket. Potential Analysis1: 1–35

    Google Scholar 

  15. Grabner PJ (1993) Completelyq-multiplicative functions: the Mellin transform approach. Acta Arith65: 85–96

    Google Scholar 

  16. Harborth H (1977) Number of odd binomial coefficients. Proc Amer Math Soc62: 19–22

    Google Scholar 

  17. Hlawka E (1960) Über C-Gleichverteilung. Ann Math Pure Appl49: 311–326

    Google Scholar 

  18. Kigami J (1989): A harmonic calculus on the Sierpinski spaces. Japan J Appl Math6: 259–290

    Google Scholar 

  19. Kuipers L, Neiderreiter H (1974) Uniform Distribution of Sequences. New York: Wiley

    Google Scholar 

  20. Lindstrøm T (1990) Brownian motion on nested fractals. Memoirs Amer Math Soc83

  21. Niederreiter H (1992) Random Number Generation and Quasi-Monte Carlo Methods. SIAM Lecture Notes 63. Philadelphia: SIAM

    Google Scholar 

  22. Niederreiter H, Tichy RF, Turnwald G (1990) An inequality for differences of distribution functions. Arch Math54: 166–172

    Google Scholar 

  23. Philipp W (1971) Mixing Sequences of Random Variables in Probabilistic Number Theory. Memoirs Amer Math Soc114

  24. Schmidt M (1972) Irregularities of distribution VII Acta Arith21: 45–50

    Google Scholar 

  25. Shima T (1991) On eigenvalue problems for the random walks on the Sierpiński pregasket. Japan J Indust Appl Math8: 127–141

    Google Scholar 

  26. Sierpiński W (1915) Sur une courbe dont tout point est un point de ramification. CR Acad Sci Paris160: 302–305

    Google Scholar 

  27. Stackelberg O (1971) A uniform law of the iterted logarithm for functions C-uniformly distributed mod 1. Indiana Univ Math J21: 515–528

    Google Scholar 

  28. Tichy RF (1991) A general inequality with applications to the discrepancy of sequences. Grazer Math Ber313: 65–72

    Google Scholar 

  29. Doob J (1953) Stochastic processes New York: Wiley

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Edmund Hlawka on the occasion of his 80th birthday

With 2 Figures

The authors are supported by the Austrian Science Foundation project Nr. P10223-PHY and by the Austrian-Italian scientific cooperation program project Nr. 39

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabner, P.J., Tichy, R.F. Equidistribution and Brownian motion on the Sierpiński gasket. Monatshefte für Mathematik 125, 147–164 (1998). https://doi.org/10.1007/BF01332824

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01332824

1991 Mathematics Subject Classification

Key words

Navigation