Skip to main content
Log in

Recursion operators and bi-Hamiltonian structures in multidimensions. I

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The algebraic properties of exactly solvable evolution equations in one spatial and one temporal dimensions have been well studied. In particular, the factorization of certain operators, called recursion operators, establishes the bi-Hamiltonian nature of all these equations. Recently, we have presented the recursion operator and the bi-Hamiltonian formulation of the Kadomtsev-Petviashvili equation, a two spatial dimensional analogue of the Korteweg-deVries equation. Here we present the general theory associated with recursion operators for bi-Hamiltonian equations in two spatial and one temporal dimensions. As an application we show that general classes of equations, which include the Kadomtsev-Petviashvili and the Davey-Stewartson equations, possess infinitely many commuting symmetries and infinitely many constants of motion in involution under two distinct Poisson brackets. Furthermore, we show that the relevant recursion operators naturally follow from the underlying isospectral eigenvalue problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gardner, C.S., Green, J.M., Kruskal, M.D., Miura, R.M.: Phys. Rev. Lett.19, 1095 (1967); Commun. Pure Appl. Math.27, 97 (1979)

    Google Scholar 

  2. Lax, P.D.: Commun. Pure Appl. Math.21, 467 (1968)

    Google Scholar 

  3. Zakharov, V.E., Manakov, S.V., Novikov, S.P., Pitaievski, L.P.: Theory of solitons, the inverse problem method. Moscow: Nauka 1980 (in Russian)

    Google Scholar 

  4. McKean, H.P., Van Moerbeke, P.: Invent. Math.30, 217 (1975)

    Google Scholar 

  5. McKean, H.P.: Commun. Pure Appl. Math.34, 197 (1981)

    Google Scholar 

  6. Ercolani, N.M., Forest, M.G.: The geometry of real sine-Gordon wavetrains. Commun. Math. Phys.99, 1 (1985)

    Google Scholar 

  7. Novikov, S.P.: Funct. Anal. Appl.8, 236 (1974)

    Google Scholar 

  8. Fokas, A.S., Ablowitz, M.J.: On the initial value problem of the second Painlevé transcendent. Commun. Math. Phys.91, 381 (1983)

    Google Scholar 

  9. Flaschka, H., Newell, A.C.: Monodromy- and spectrum-preserving deformations. Commun. Math. Phys.76, 67 (1980)

    Google Scholar 

  10. Jimbo, M., Miwa, T., Ueno, K.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. Physica2, 306 (1981)

    Google Scholar 

  11. Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Physica2, 407 (1981)

    Google Scholar 

  12. Fokas, A.S., Anderson, R.L.: J. Math. Phys.23, 1066 (1982)

    Google Scholar 

  13. Fuchssteiner, B.: Nonlinear Anal. Theory Methods Appl.3, 849 (1979)

    Google Scholar 

  14. Fokas, A.S., Fuchssteiner, B.: Lett. Nuovo Cim.28, 299 (1980)

    Google Scholar 

  15. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica4, 47 (1981)

    Google Scholar 

  16. Magri, F.: J. Math. Phys.19, 1156 (1978); Nonlinear evolution equations and dynamical systems. Boiti, M., Pempinelli, F., Soliani, G. (eds.). Lecture Notes in Physics, Vol. 120. p. 233. Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  17. Fuchssteiner, B.: The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems. Progr. Theor. Phys.68, 1082 (1982)

    Google Scholar 

  18. Kaup, D.J.: J. Math. Anal. Appl.54, 849 (1976)

    Google Scholar 

  19. Gerdjikov, V.S., Ivanov, M.I., Kulish, P.P.: Quadratic bundle and nonlinear equations. Theor. Math. Phys.44, 342 (1980)

    Google Scholar 

  20. Deift, P., Trubowitz, E.: Commun. Pure Appl. Math.32, 121 (1979)

    Google Scholar 

  21. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Phys. Rev. Lett.30, 1262 (1973a); Phys. Rev. Lett.31, 125 (1973b); Stud. Appl. Math.53, 249 (1974)

    Google Scholar 

  22. Shabat, A.B.: Differ. Equations15, 1299 (1979); Funct. Anal. Appl.9, 75 (1975)

    Google Scholar 

  23. Caudrey, P.: The inverse problem for a generalN×N spectral equation. Physica6, 51 (1982)

    Google Scholar 

  24. Beals, R., Coifman, R.R.: Scattering and inverse scattering for first order systems. Commun. Pure Appl. Math.37, 39 (1984); Scattering, transformations spectrals, et équations d'évolution nonlinéars. I, II, Séminaire Goulaouic-Meyer-Schwartz, 1980–1981, exp. 22; 1981–1982, exp. 21, Ecole Polytechnique, Palaiseau

    Google Scholar 

  25. Beals, R.: Am. J. Math. (to appear)

  26. Zakharov, V.E., Shabat, A.B.: Sov. Phys. JETP34, 62 (1972)

    Google Scholar 

  27. Wadati, M.: The exact solution of the modified Korteweg-de Vries equation. J. Phys. Soc. Jpn.32, 1681 (1972)

    Google Scholar 

  28. Kaup, D.J.: Stud. Appl. Math.62, 189 (1980)

    Google Scholar 

  29. Deift, P., Tomei, C., Trubowitz, E.: Commun. Pure Appl. Math.35, 567 (1982)

    Google Scholar 

  30. Kaup, D.J.: Stud. Appl. Math.55, 9 (1976)

    Google Scholar 

  31. Symes, W.: J. Math. Phys.20, 721 (1979)

    Google Scholar 

  32. Newell, A.C.: The general structure of integrable evolution equations. Proc. R. Soc. Lond. Ser. A365, 283 (1979)

    Google Scholar 

  33. Gel'fand, I.M., Dorfman, I.Ya.: Funct. Anal. Appl.13, 13 (1979);14, 71 (1980)

    Google Scholar 

  34. Fordy, A.P., Gibbons, J.: J. Math. Phys.22, 1170 (1981)

    Google Scholar 

  35. Kuperschmidt, B.A., Wilson, G.: Invent. Math.62, 403 (1981)

    Google Scholar 

  36. Fokas, A.S., Ablowitz, M.J.: Stud. Appl. Math.69, 211 (1983)

    Google Scholar 

  37. Ablowitz, M.J., BarYaacov, D., Fokas, A.S.: Stud. Appl. Math.69, 135 (1983)

    Google Scholar 

  38. Fokas, A.S.: Phys. Rev. Lett.51, 3 (1983)

    Google Scholar 

  39. Fokas, A.S., Ablowitz, M.J.: J. Math. Phys.25, 2505 (1984)

    Google Scholar 

  40. Fokas, A.S., Ablowitz, M.J.: Lectures on the inverse scattering transform for multidimensional (2+1) problems, pp. 137–183. Wolf, K.B. (ed.). Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  41. Manakov, S.V.: The inverse scattering transform for the time-dependent Schrödinger equation and Kadomtsev-Petviashvili equation. Physica3, 420 (1981)

    Google Scholar 

  42. Kaup, D.J.: The inverse scattering solution for the full three-dimensional three-wave resonant interaction. Physica1, 45 (1980)

    Google Scholar 

  43. Zakharov, V.E., Konopelchenko, B.G.: On the theory of recursion operator. Commun. Math. Phys.94, 483 (1984)

    Google Scholar 

  44. Fokas, A.S., Santini, P.M.: Stud. Appl. Math.75, 179 (1986)

    Google Scholar 

  45. Konopelchenko, B.G., Dubrovsky, V.G.: Bäcklund-Calogero group and general form of integrable equations for the two-dimensional Gel'fand-Dikij-Zakharov-Shabat problem. Bilocal approach. Physica16, 79 (1985)

    Google Scholar 

  46. Salermo, M.: On the phase manifold geometry of the two-dimensional Burgers equations, preprint CNS, Los Alamos National Laboratories, 1985

  47. Fokas, A.S., Fuchssteiner, B.: The hierarchy of the Benjamin-Ono equation. Phys. Lett.86, 341 (1981)

    Google Scholar 

  48. Oevel, W., Fuchssteiner, B.: Explicit formulas for symmetries and conservation laws of the Kadomtsev-Petviashvili equation. Phys. Lett.88, 323 (1982)

    Google Scholar 

  49. Chen, H.H., Lee, Y.C., Lin, J.E.: Physica9, 439 (1983)

    Google Scholar 

  50. Fuchssteiner, B.: Progr. Theor. Phys.70, 150 (1983) Dorfman, I.Ya.: Deformations of Hamiltonian structures and integrable systems (preprint)

    Google Scholar 

  51. Barouch, E., Fuchssteiner, B.: Stud. Appl. Math.73, 221 (1985) Li Yishen, Zhu Guocheng: New set of symmetries for the integrable equations, Lie algebra, non-isospectral eigenvalue problems, I, II. Preprint, Department of Mathematics, University of Science and Technology of China, Hefei, Anhui (1985)

    Google Scholar 

  52. Fokas, A.S., Santini, P.M.: Recursion operators and bi-Hamiltonian structures in multidimensions II. Commun. Math. Phys. (to appear)

  53. Jiang, Z., Bullough, R.K., Manakov, S.V.: Complete integrability of the Kadomtsev-Petviashvili equations in 2+1 dimensions. Physica18, 305 (1986)

    Google Scholar 

  54. Manakov, S.V., Santini, P.M., Takhtajan, L.A.: Asymptotic behavior of the solutions of the Kadomtsev-Petviashvili equation (two-dimensional Korteweg-de Vries equation). Phys. Lett.75, 451 (1980)

    Google Scholar 

  55. Fokas, A.S.: J. Math. Phys.21 (6), 1318 (1980)

    Google Scholar 

  56. Calogero, F., Degasperis, A.: Nuovo Cim.39, 1 (1977)

    Google Scholar 

  57. Magri, F., Morosi, C.: A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds. Preprint, Universitá di Milano, 1984

  58. Magri, F., Morosi, C., Ragnisco, O.: Commun. Math. Phys.99, 115 (1985)

    Google Scholar 

  59. Lax, P.D.: SIAM Review18, 351 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santini, P.M., Fokas, A.S. Recursion operators and bi-Hamiltonian structures in multidimensions. I. Commun.Math. Phys. 115, 375–419 (1988). https://doi.org/10.1007/BF01218017

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01218017

Keywords

Navigation