Skip to main content
Log in

Dams and downstream aquatic biodiversity: Potential food web consequences of hydrologic and geomorphic change

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Responses of rivers and river ecosystems to dams are complex and varied, as they depend on local sediment supplies, geomorphic constraints, climate, dam structure and operation, and key attributes of the biota. Therefore, “one-size-fits-all” prescriptions cannot substitute for local knowledge in developing prescriptions for dam structure and operation to protect local biodiversity. One general principle is self-evident: that biodiversity is best protected in rivers where physical regimes are the most natural. A sufficiently natural regime of flow variation is particularly crucial for river biota and food webs. We review our research and that of others to illustrate the ecological importance of alternating periods of low and high flow, of periodic bed scour, and of floodplain inundation and dewatering. These fluctuations regulate both the life cycles of river biota and species interactions in the food webs that sustain them. Even if the focus of biodiversity conservation efforts is on a target species rather than whole ecosystems, a food web perspective is necessary, because populations of any species depend critically on how their resources, prey, and potential predators also respond to environmental change. In regulated rivers, managers must determine how the frequency, magnitude, and timing of hydrologic events interact to constrain or support species and food webs. Simple ecological modeling, tailored to local systems, may provide a framework and some insight into explaining ecosystem response to dams and should give direction to mitigation efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Angermeier, P. L. 1994. Does biodiversity include artificial diversity?Conservation Biology 8:600–602.

    Google Scholar 

  • Angermeier, P. L., and J. R. Karr. 1994. Biological integrity versus biological diversity as policy directives.BioScience 44:690–697.

    Google Scholar 

  • Bain, M. B., and J. M. Boltz. 1989. Importance of floodplain wetlands to riverine fish diversity and production: Study plan and hypothesis. Report, Alabama Cooperative Fisheries and Wildlife Research Unit, National Ecology Research Center, US Fish and Wildlife Service, Auburn, Alabama.

    Google Scholar 

  • Bayley, P. B. 1995. Understanding large temperate and tropical river-floodplain ecosystems.BioScience 45:153–158.

    Google Scholar 

  • Brookes, A. 1994. River channel change. Pages 55–75in P. Calow and G. E. Petts (eds.), The rivers handbook, vol. 2. Wiley & Sons, Chichester, UK.

    Google Scholar 

  • Cabana, G., and J. B. Rasmussen. 1995. Measuring food chain structure with N-isotopes: Application to contaminant bioaccumulation and the modeling of omnivory.Nature 372:255–257.

    Google Scholar 

  • Carter, A. J., and A. H. Rogers. 1989. Phragmites reedbeds in the Kruger National Park: The complexity of change in riverbed state. Pages 339–346in S. Kienzle, and H. Maaren (eds.), Proceedings of the fourth South African national hydrological symposium. University of Pretoria, Pretoria.

    Google Scholar 

  • Cohen, J. 1978. Food webs and niche space. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Connell, J. H. 1978. Diversity in tropical rain forests and coral reefs.Science 199:1302–1310.

    Google Scholar 

  • Craig, J. F., and J. B. Kemper (eds.) 1987. Regulated streams: Advances in ecology. Plenum Press, New York.

    Google Scholar 

  • Davies, B. R. 1979. Stream regulation in Africa: A review. Pages 113–142in J. V. Ward and J. A. Stanford (eds.), The ecology of regulated streams. Plenum, New York.

    Google Scholar 

  • Davies, B. R., M. C. Thoms, K. F. Walker, J. H. O'Keeffe, and J. A. Gore. 1994. Dryland rivers: Their ecology, conservation and management. Pages 484–511in P. Calow and G. E. Petts (eds.), The rivers handbook, vol. 2. Wiley & Sons, Chichester, UK.

    Google Scholar 

  • Elton, C. S. 1927. Animal ecology. Macmillan, New York.

    Google Scholar 

  • Fretwell, S. D. 1977. The regulation of plant communities by food chains exploiting them.Perspectives in Biology and Medicine 20:169–185.

    Google Scholar 

  • Gore, J. A. 1994. Hydrologic change. Pages 33–54in P. Calow and G. E. Petts (eds.). The rivers handbook, vol. 2. Wiley & Sons, Chichester, UK.

    Google Scholar 

  • Hastings, A. 1977. Spatial heterogeneity and the stability of predator—prey systems.Theoretical Population Biology 12:37–48.

    Google Scholar 

  • Havel, V. 1995. Towards a civil society. Lidove Noviny Publishing House, Prague, Czech Republic.

    Google Scholar 

  • Hayes, M. P., and M. R. Jennings. 1986. Decline of ranid frog species in western North America: Are bullfrogs (Rana catesbeiana) responsible?Journal of Herpetology 20:490–509.

    Google Scholar 

  • Huffaker, C. B. 1958. Experimental studies on predation: Dispersion factors and predator—prey oscillations.Hilgardia 27:343–383.

    Google Scholar 

  • Hutchinson, G. E. 1961. The paradox of the plankton.American Naturalist 95:137–146.

    Google Scholar 

  • Junk, W.J., P. B. Bayley, and R. E. Sparks. 1989. The flood pulse concept in river-floodplain systems. Pages 110–127in D. P. Dodge (ed.), Proceedings of the international large river symposium. Canadian Special Publication, Fisheries and Aquatic Science 106, Ottawa, Ontario, Canada.

  • Kling, G. W., B. Fry, and W. J. O'Brien. 1992. Stable isotopes and planktonic trophic structure in arctic lakes.Ecology 73:561–566.

    Google Scholar 

  • Kondolf, G. M., G. F. Cada, M. J. Sale, and T. Felando. 1991. Distribution and stability of potential salmonid spawning gravels in steep boulder-bed streams of the eastern Sierra Nevada.Transactions of the American Fisheries Society 120:177–186.

    Google Scholar 

  • Kondolf, G. M., M. J. Sale, and M. G. Wolman. 1993. Modification of fluvial gravel size by spawning salmonids.Water Resources Research 29:2265–2274.

    Google Scholar 

  • Koppes, S. 1990. Ecological perspective.Arizona State University Research Magazine 5:16–19.

    Google Scholar 

  • Kupferberg, S.J. 1996. Hydrologic and geomorphic factors affecting conservation of a river breeding frog (Rana boylii).Ecological Applications (in press).

  • Kupferberg, S. J., J. C. Marks, and M. E. Power. 1994. Effects of variation in natural algal and detrital diets on larval anuran (Hyla regilla) life history traits.Copeia 1994:446–457.

    Google Scholar 

  • Leopold, L. B., M. G. Wolman, and J. P. Miller. 1964. Fluvial processes in geomorphology. Freeman, San Francisco.

    Google Scholar 

  • Ligon, F. K., W. E. Dietrich, and W.J. Trush. 1995. Downstream ecological effects of dams.BioScience 45:183–192.

    Google Scholar 

  • Lillehammer, A., and S. J. Saltveit. 1984. Regulated rivers. Unversiteitsforlaget, Oslo.

    Google Scholar 

  • Lind, A.J., H. H. Welsh, Jr., and R. A. Wilson. 1996. The effects of a dam on breeding habitat and egg survival of the foothill yellow-legged frog (Rana boylii) in northwestern California.Herpetological Review (in press).

  • Lowe-McConnell, R. H. 1964. The fishes of the Rupununi savanna district of British Guiana, South America. Pt. I. Ecological groupings of fish species and the effects of the seasonal cycles on the fish.Journal of the Linnaean Society (Zoology) 45:103–144.

    Google Scholar 

  • Mathur, D., W. H. Bason, E. J. Purdy, Jr., and C. A. Silver. 1985. A critique of the instream flow methodology.Canadian Journal of Fisheries and Aquatic Sciences 42:821–835.

    Google Scholar 

  • McAuliffe, J. R. 1984. Resource depression by a stream herbivore: Effects on distributions and abundances of other grazers.Oikos 42:327–333.

    Google Scholar 

  • Meffe, G. K. 1984. Effects of abiotic disturbance on coexistence of predator-prey fish species.Ecology 65:1525–1534.

    Google Scholar 

  • Meffe, G. K., and W. L. Minckley. 1987. Differential selection by flooding in stream fish communities of the arid American southwest. Pages 93–104in W. J. Matthews and D. C. Heins (eds.), Community and evolutionary ecology of North American stream fishes. University of Oklahoma Press, Norman, Oklahoma.

    Google Scholar 

  • Moyle, P. B. 1976. Fish introduction in California: History and impact on native fishes.Biological Conservation 9:101–118.

    Google Scholar 

  • Moyle, P. B., H. W. Li, and B. A. Barton. 1986. The Frankenstein effect: Impact of introduced fishes on native fishes in North America. Pages 415–426in R. H. Stroud (ed.), Fish culture in fisheries management. American Fisheries Society, Bethesda, Maryland.

    Google Scholar 

  • Mundie, J. H. 1979. The regulated stream and salmon management. Pages 307–319in J. V. Ward and J. A. Stanford (eds.), The ecology of regulated streams. Plenum, New York.

    Google Scholar 

  • Murphy, M. L., and K. Koski. 1989. Input and depletion of woody debris in Alaska streams and implications for streamside management.North American Journal of Fisheries Management 9:427–436.

    Google Scholar 

  • Noss, R. F. 1990. Indicators for monitoring biodiversity: A hierarchical approach.Conservation Biology 4:355–364.

    Google Scholar 

  • Oksanen, L. 1991. Trophic levels and trophic dynamics: A consensus emerging?Trends in Evolution and Ecology 6:58–60.

    Google Scholar 

  • Oksanen, L., S. D. Fretwell, J. Arruda, and P. Niemela. 1981. Exploitation ecosystems in gradients of primary productivity.American Naturalist 118:240–261.

    Google Scholar 

  • O'Keefe, J. H., and B. R. Davies. 1991. Conservation and management of the rivers of Kruger National Park: Suggested methods for calculating instream flow needs.Aquatic Conservation 1:55–71.

    Google Scholar 

  • Orth, D. J., and O. E. Maughan. 1982. Evaluation of the incremental methodology for recommending instream flows for fishes.Transactions of the American Fisheries Society 111:413–445.

    Google Scholar 

  • Orth, D. J., and O. E. Maughan. 1986. In defense of the instream flow incremental methodology.Canadian Journal of Fisheries and Aquatic Sciences 43:1092–1093.

    Google Scholar 

  • Paine, R. T. 1980. Food webs: Linkage, interaction strength, and community infrastructure.Journal of Animal Ecology 49:667–685.

    Google Scholar 

  • Petts, G. E. 1980. Long-term consequences of upstream impoundment.Environmental Conservation 7:325–332.

    Google Scholar 

  • Petts, G. E. 1984. Impounded rives. Perspectives for ecological management. Wiley & Sons, Chichester, UK.

    Google Scholar 

  • Pimm, S. L. 1982. Food webs. Chapman and Hall, New York.

    Google Scholar 

  • Pimm, S. L., and J. H. Lawton. 1977. The numbers of trophic levels in ecological communities. Nature 268:329–331.

    Google Scholar 

  • Power, M. E. 1990. Effects of fish in river food webs.Science 250:411–415.

    Google Scholar 

  • Power, M. E. 1992a. Top-down and bottom-up forces in food webs: Do plants have primacy?Ecology 73:733–746.

    Google Scholar 

  • Power, M. E. 1992b. Hydrologic and trophic controls of seasonal algal blooms in northern California rivers.Archivs für Hydrobiologie 125:385–410.

    Google Scholar 

  • Power, M. E. 1995. Floods, food chains and ecosystem processes in rivers. Pages 52–60in C. L. Jones and J. H. Lawton (eds.), Linking species and ecosystems. Chapman and Hall, New York.

    Google Scholar 

  • Power, M. E., and A. J. Stewart. 1987. Disturbance and recovery of an algal assemblage following flooding in an Oklahoma stream.American Midland Naturalist 117:333–345.

    Google Scholar 

  • Power, M. E., W. J. Matthews, and A. J. Stewart. 1985. Grazing minnows, piscivorous bass and stream algae: Dynamics of a strong interaction.Ecology 66:1448–1456.

    Google Scholar 

  • Power, M. E., J. C. Marks, and M. S. Parker. 1992. Communitylevel consequences of variation in prey vulnerability.Ecology 73:2218–2223.

    Google Scholar 

  • Power, M. E., A. Sun, G. Parker, W. E. Dietrich, and J. T. Wootton. 1995a. Hydraulic food chain models.BioScience 45:159–167.

    Google Scholar 

  • Power, M. E., G. Parker, W. E. Dietrich, and A. Sun. 1995b. How does floodplain width affect floodplain river ecology? An preliminary exploration using simulations.Geomorphology 13:301–317.

    Google Scholar 

  • Power, M. E., M. S. Parker, and J. T. Wootton. 1995c. Disturbance and food chain length in rivers. Pages 286–297in G. A. Polis and K. O. Winemiller (eds.), Food webs: Integration of patterns and dynamics. Chapman and Hall, New York.

    Google Scholar 

  • Reid, W. V., and K. R. Miller. 1989. Keeping options alive. World Resources Institute, Washington, DC.

    Google Scholar 

  • Slobodkin, L. B. 1961. Growth and regulation of animal populations. Holt, Rinehart and Winston, New York.

    Google Scholar 

  • Sparks, R. E. 1992. Risks of altering the hydrologic regime of large rivers. Pages 119–152in J. Ciarns, Jr., B. R. Niederlehner and D. R. Orvos, (eds.), Predicting ecosystem risk. Advances in modern environmental toxicology, vol. 20. Princeton Scientific Publishing, Princeton, New Jersey.

    Google Scholar 

  • Sparks, R. E. 1995. Need for ecosystem management of large rivers and their floodplains.Bioscience 45:168–182.

    Google Scholar 

  • Sparks, R. E., P. B. Bayley, S. L. Kohler, and L. L. Osborne. 1990. Disturbance and recovery of large floodplain rivers.Environmental Management 14:699–709.

    Google Scholar 

  • Stanford, J., and J. V. Ward. 1993. An ecosystem perspective of alluvial rivers: Connectivity and the hyporheic corridor.Journal of the North American Benthological Society 12:48–60.

    Google Scholar 

  • Starfield, A. M., B. P. Farm, and R. H. Taylor. 1989. A rule-based ecological model for the management of an estuarine lake.Ecological Modelling 46:107–119.

    Google Scholar 

  • Stromberg, J. C. 1993. Instream flow models for mixed deciduous vegetation within a semi-arid region.Regulated Rivers 8:225–235.

    Google Scholar 

  • Stromberg, J. C., B. D. Richter, D. Patten, and L. G. Wolden. 1993. Response of a Sonoran riparian forest to a ten-year return flood.Great Basin Naturalist 53:118–130.

    Google Scholar 

  • Tilman, D. 1994. Competition and biodiversity in spatially structured habitats.Ecology 75:2–16.

    Google Scholar 

  • Wade, P. M. 1994. Management of macrophytic vegetation. Pages 363–385in P. Calow and G. E. Petts (eds.), The rivers handbook, vol. 2. Wiley & Sons, Chichester, UK.

    Google Scholar 

  • Walters, C. 1986. Adaptive management of renewable resources. Macmillan, New York.

    Google Scholar 

  • Ward, J. V., and J. A. Stanford (eds.). 1979. The ecology of regulated streams. Plenum, New York.

    Google Scholar 

  • Weisberg, S. B., and W. H. Burton. 1993. Enhancement of fish feeding and growth after an increase in minimum flow below the Conowingo Dam.North American Journal of Fisheries Management 13:103–109.

    Google Scholar 

  • Welcomme, R. L. 1985. River fisheries. Fisheries Technical Paper 252. UN Food and Agricultural Organization, Rome, Italy.

    Google Scholar 

  • Williams, G. P., and M. G. Wolman. 1984. Downstream effects of dams on alluvial rivers. Geological Survey Professional Paper 1286, USGS, Washington, DC.

    Google Scholar 

  • Wolman, M. G., and J. P. Miller. 1960. Magnitude and frequency of forces in geomorphic processes.Journal of Geology 68:54–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Power, M.E., Dietrich, W.E. & Finlay, J.C. Dams and downstream aquatic biodiversity: Potential food web consequences of hydrologic and geomorphic change. Environmental Management 20, 887–895 (1996). https://doi.org/10.1007/BF01205969

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01205969

Key words

Navigation