References
J. J. Alibert andB. Dacorogna, An example of a quasiconvex function not polyconvex in dimension two. Arch. Rational Mech. Anal.117, 155–166 (1992).
J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal.64, 337–403 (1977).
J. M. Ball andF. Murat,W 1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal.58, 225–253 (1984).
M.Bousselsal, Etude de quelques problémes de calcul des variations liés á la mécanique. Thesis, Université de Metz 1993.
M. Chipot, Hyperelasticity for crystal. European J. App. Math.1, 113–129 (1990).
P. G.Ciarlet, Elasticité tridimensionnelle. Masson 1986.
B.Dacorogna, Direct methods in the calculus of variations. Berlin-Heidelberg-New York 1989.
B. Dacorogna, A relaxation theorem and its applications to equilibrium of gases. Arch. Rational Mech. Anal.77, 359–386 (1981).
B. Dacorogna, Quasiconvexity and relaxation of non convex variational problem. J. Funct. Anal.46, 102–118 (1982).
B.Dacorogna, Weak continuity and weak lower semicontinuity of non linear functionals. LNM922, Berlin-Heidelberg-New York 1982.
B. Dacorogna, Remarques sur les notions de polyconvexité, quasiconvexité et convexité de rang 1. J. Math. Pures Appl.64, 403–438 (1985).
B. Dacorogna, J. Douchet, W. Gangbo andJ. Rappaz, Some examples for rank one functions in dimension two. Proc. Roy. Soc. Edinburgh Sect. A114, 135–150 (1990).
N.Firoozye, Optimal translations and relaxations of some multiwell energies. Ph. D. Thesis, New York University 1990.
W. Gangbo, On the continuity of the polyconvex, quasiconvex and rank one convex envelope with respect to growth condition. Proc. Roy. Soc. Edinburgh Sect. A123, 707–729 (1993).
R. V.Kohn, The relaxation of a double-well energy. To appear.
R. V. Kohn andS. Strang, Optimal design and relaxation of variational problems I, II and III. Comm. Pure Appl. Math.39, 113–137; 139–182; 353–377 (1986).
H. LeDrei and A.Raoult, The quasiconvex envelope of the Saint Venant-Kirchhoff Energy. To appear.
C. B. Morrey, Quasiconvexity and the semicontinuity of multiple integrals. Pacific J. Math.2, 25–53 (1952).
C. B.Morrey, Multiple integrals in the calculus of variations. Berlin-Heidelberg-New York 1966.
V. Šverák, Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh Sect. A120, 185–189 (1992).
V. Šverák, Examples of rank one convex functions. Proc. Roy. Soc. Edinburgh Sect. A114, 237–242 (1990).
V. Šverák, Quasiconvexity functions with subquadratic growth. Proc. Roy. Soc. London Sect. A433, 723–725 (1991).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bousselsal, M., Chipot, M. Relaxation of some functionals of the calculus of variations. Arch. Math 65, 316–326 (1995). https://doi.org/10.1007/BF01195543
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01195543