Skip to main content
Log in

Spinning of a liquid film from a rotating disc in the presence of a magnetic field — a numerical solution

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A numerical solution is obtained for the development of a conducting fluid film on the surface of a spinning disc, in the presence of a magnetic field applied perpendicular to the disc. A finite-difference method is employed to obtain the solution of Navier-Stokes equations modified to include magnetic forces due to MHD interactions. The combined effects of film inertia, acceleration of the disc and magnetic forces are analysed. The numerical results reveal that the rate of thinning of the fluid film is strongly influenced by the inertial and magnetic forces when the Reynolds number is large and that the existing asymptotic theory by Ray and Dandapat [24] is inadequate for predicting transient film thickness. When the disc has a finite acceleration at the start-up, the magnetic and inertia effects are important even at low Reynolds numbers and the thinning rate is reduced. It is observed that for both low and high Reynolds number flows, the film thickness increases with Hartmann numberM for a fixed time and the rate of depletion is less for largeM than for smallM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghandi, S. K.: VLSI fabrication principles. New York: Wiley 1983.

    Google Scholar 

  2. Weiss, R. D.: Perpendicular orientation of aeicularr-Fe2O3 on recording discs. IEEE Transactions of Magnetics.19, 1677–1679 (1983).

    Google Scholar 

  3. Emslie, A. G., Bonner, F. T., Peck, L. G.: Flow of a viscous liquid on a rotating disk. J. Appl. Phys.29, 858–862 (1958).

    Google Scholar 

  4. Thomas, I. M.: High Laser Damage threshold porous silica antireflective coating. Applied Optics.25, 1481–1483 (1986).

    Google Scholar 

  5. Acrivos, A., Shah, M. J., Petersen, E. E.: On the flow of a non-Newtonian liquid on a rotating disk. J. Appl. Phys.31, 963–968 (1960).

    Google Scholar 

  6. McConnell, W. H.: On the rate of thinning of thin liquid films on a rotating disk. J. Appl. Phys.64, 2232–2233 (1988).

    Google Scholar 

  7. Flack, W. W., Soong, D. S., Bell, A. T., Hess, D. W.: A mathematical model for spin coating of polymer resists. J. Appl. Phys.56, 1199–1206 (1984).

    Google Scholar 

  8. Bornside, D. E., Macosko, C. W., Scriven, L. E.: On the modeling of spin coating. J. Imag. Tech.13, 122–128 (1987).

    Google Scholar 

  9. Jenekhe, S. A., Schuldt, S. B.: Coating flow of non-Newtonian fluids on a flat rotating disk. Ind. Eng. Chem. Fund.23, 432–436 (1984).

    Google Scholar 

  10. Tu, O. Y.: Depletion and retention of fluid on a rotating disk. J. Lub. Tech.105, 625–629 (1983).

    Google Scholar 

  11. Chun, B. T.: Investigation of the solvent-evaporation effect on spin coating of thin films. Polym. Eng. Sci.23, 399–403 (1983).

    Google Scholar 

  12. Lawrence, C. J.: The mechanics of spin coating of polymer films. Phys. Fluids.31, 2786–2795 (1988).

    Google Scholar 

  13. Yanagisawa, M.: Slip effect for thin liquid film on a rotating disk. J. Appl. Phys.61, 1034–1037 (1987).

    Google Scholar 

  14. Middleman, S.: The effect of induced air-flow on the spin-coating of viscous liquids. J. Appl. Phys.62, 2530–2532 (1987).

    Google Scholar 

  15. Meyerhofer, D.: Characteristics of resist films produced by spinning. J. Appl. Phys.49, 3993–3997 (1978).

    Google Scholar 

  16. Jenekhe, S. C.: Effects of solvent mass transfer on flow of polymer solutions on a flat rotating disk. Ind. Eng. Chem. Fund.23, 425–432 (1984).

    Google Scholar 

  17. Hwang, J. H., Ma, F.: On the flow of a thin liquid film over a rough rotating disk. J. Appl. Phys.66, 388–394 (1989).

    Google Scholar 

  18. Dandapat, B. S., Ray, P. C.: Film cooling on a rotating disk. Int. J. Nonlinear Mech.25, 569–582 (1990).

    Google Scholar 

  19. Dandapat, B. S., Ray, P. C.: Flow of a thin liquid film over a cold/hot rotating disk. Int. J. Nonlinear Mech.28, 489–496 (1993).

    Google Scholar 

  20. Dandapat, B. S., Ray, P. C.: The effect of thermocapillarity on the flow of a thin liquid film on a rotating disk. J. Appl. Phys.27, 2041–2045 (1994).

    Google Scholar 

  21. Higgins, B. G.: Flow on a rotating disk. Phys. Fluids.29, 3522–3529 (1986).

    Google Scholar 

  22. Regh, T. J., Higgins, B. G.: The effect of inertia and interfacial shear on film flow of a rotating disk. Phys. Fluids.31, 1360–1371 (1988).

    Google Scholar 

  23. Wang, C. Y., Watson, L. T., Alexander, K. A.: Spinning of a liquid film from an accelerating disk. IMA J. Appl. Math.46, 201–210 (1991).

    Google Scholar 

  24. Ray, P. C., Dandapat, P. S.: Flow of thin liquid film on a rotating disk in the presence of a transverse magnetic field. Quart. J. Mech. Appl. Math.47, 297–304 (1994).

    Google Scholar 

  25. Roberts, G. O.: Lecture Notes in Physics. New York: Springer, No.8, pp. 171–175 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usha, R., Götz, T. Spinning of a liquid film from a rotating disc in the presence of a magnetic field — a numerical solution. Acta Mechanica 147, 137–151 (2001). https://doi.org/10.1007/BF01182358

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01182358

Keywords

Navigation