Skip to main content
Log in

Nonequilibrium flow with condensation

Nichtgleichgewichtsströmungen mit Kondensation

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Diabatic processes dominate compressible flows with phase change where the heat of condensation or vaporization causes changes of enthalpy in the flow. The equations of motion for condensing flows are given in analogy to those of reacting flows and discontinuities are discussed. The nonequilibrium process of condensation by homogeneous nucleation in the supersaturated state is singled out by examples for steady and unsteady nozzle flows, Prandtl-Meyer flow, unsteady expansions and shock waves. A selective guide to the widely dispersed literature is provided and the early history of the discovery of condensation in supersonic wind tunnels is recounted.

Zusammenfassung

Kompressible Strömungen mit Phasenänderung können behandelt werden, wenn die Kondensations- oder Verdampfungswärme eingeführt wird. Die Bewegungsgleichungen kondensierender Strömungen werden analog zu denen der reagierenden Gase angegeben und Diskontinuitäten werden diskutiert. Der Nichtgleichgewichtsprozeß der Kondensation durch Keimbildung im übersättigten Zustand wird besonders behandelt. Beispiele für stationäre und instationäre Düsenströmung, Prandtl-Meyer-Strömung, instationäre Expansionsströmung und Stoßwellen werden gegeben. Ein kritischer Führer zur Literatur und historische Bemerkungen über die Geschichte der Entdeckung der Kondensation in Überschallwindkanälen beschließen die Arbeit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackeret, J.: Windkanäle für hohe Geschwindigkeiten, 2nd ed., p. 473–523. 1940, l.c. Volta [87] Volta Reale Accademia D'Italia, Fondazione Alessandro Volta. Atti dei Convegni 5. Le Alte Velocita in Aviazone. 30 Sept. to 6 Oct. 1935—XIII, Roma. 1st ed. 1936-XIV; 2nd ed., 1940-XIX (1935).

  2. Ackeret, J.: Discussion with author, February 26, 1973.

  3. Andres, R. P.: Homogeneous Nucleation in a Vapor, Chap. 2, p. 69 l.c. [100].Zettlemoyer, A. C.: Ed., Nucleation. New York: Marcel Dekker. 1969.

  4. Arthur, P. D.: Effects of Impurities on the Supersaturation of Nitrogen in a Hypersonic Wind Tunnel. Doctoral Dissertation, California Institute of Technology, Pasadena, California (1952).

    Google Scholar 

  5. Bailey, N. P.: The Thermodynamics of Air at High Velocities. J. Aero. Sci.11, 227 (1944).

    Google Scholar 

  6. Barschdorff, D.: Dichtemessungen in Wasserdampfströmungen mit einem Differentialinterferometer. Photographie und Film in Industrie und Technik III, p. 155. Darmstadt-Wien: Verlag Dr. Othmar Helwich. 1971.

    Google Scholar 

  7. Barschdorff, D.: Verlauf der Zustandsgrößen und gasdynamische Zusammenhänge bei der spontanen Kondensation reinen Wasserdampfes in Lavaldüsen. Forsch. Ing. Wes.37, 146 (1971).

    Google Scholar 

  8. Barschdorff, D., andG. A. Fillipov: Analysis of Certain Special Operating Modes of Laval Nozzles with Local Heat Supply. Energetika i Transport3, 94 (1970), Also Heat Transfer (Soviet Research)2, 76 (1970).

    Google Scholar 

  9. Barschdorff, D., W. J. Dunning, P. P. Wegener, andB. J. C. Wu: Homogeneous Nucleation in Steam Nozzle Condensation. Nature Physical Science140, 167 (1972).

    Google Scholar 

  10. Bartlmä, F.: Instationäre Strömungsvorgänge bei Überschreiten der kritischen Wärmezufuhr. Z. Flugwissenschaften11, 160 (1963).

    Google Scholar 

  11. Bartlmä, F.: Ebene Überschallströmung mit Relaxation. Appl. Mech. Proc. 11th Int. Congr., Munich, p. 1056 (1964).

  12. Becker, E.: Chemically Reacting Flows. Ann. Rev. Fluid Mech.4, 155 (1972).

    Google Scholar 

  13. Becker, R., andW. Döring: Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann. Physik24, 719 (1935).

    Google Scholar 

  14. Blythe, P. A., andC. J. Shih: Weak Condensation Shocks and the High Activation Limit. Tech. Report No. CAM-110-26 (BRL CR NO. 90) (1973). (Available as AD-758277 from the National Technical Information Service, Springfield, Va. 22151.)

  15. Bray, K. N. C.: Atomic Recombination in a Hypersonic Wind-Tunnel Nozzle. J. Fluid Mech.6, 1 (1959).

    Google Scholar 

  16. Brodkey, R. S.: The Phenomena of Fluid Motions. Reading, Mass.: Addison-Wesley Publishing Co. 1967.

    Google Scholar 

  17. Broer, L. J. F.: On the Influence of Acoustic Relaxation on Compressible Flow. Appl. Sci. Res.A 2, 447 (1951).

    Google Scholar 

  18. Buhler, R. D.: Condensation of Air Components in Hypersonic Wind Tunnels. Theoretical Calculations and Comparison with Experiment. Doctoral Dissertation, California Institute of Technology, Pasadena, California (1952).

    Google Scholar 

  19. Burgers, J. M.: Address at the Dedication of the Naval Ordnance Laboratory, Aeroballistic Research Facilities. U.S. Naval Ordnance Report 1130, p. 20 (1949).

  20. Busemann, A.: Private communication March 19, 1971, and discussion with author November 1972.

  21. Cagliostro, D. J.: Periodic Compressible Nozzle Flow Caused by Heat Addition due to Condensation. Doctoral Dissertation, Yale University, New Haven, Connecticut (1972).

    Google Scholar 

  22. Charyk, J. F.: Condensation Phenomena in Supersonic Flows. Doctoral Dissertation, California Institute of Technology, Pasadena, California (1946).

    Google Scholar 

  23. Clumpner, J. A.: Light Scattering from Ethyl Alcohol Droplets Formed by Homogeneous Nucleation. J. Chem. Phys.55, 5042 (1971).

    Google Scholar 

  24. Courant, R., andK. O. Friedrichs: Supersonic Flow and Shock Waves. New York: Interscience. 1948.

    Google Scholar 

  25. Daum, F. L., andG. Gyarmathy: Condensation of Air and Nitrogen in Hypersonic Wind Tunnels. AIAA J.6, 458 (1968).

    Google Scholar 

  26. Davydov, L. M.: Study of Nonequilibrium Condensation in Supersonic Nozzles and Jets. Mekhanika Zhidkosti i Gaza3, 66 (1971). Also Fluid Mechanics (Soviet Research)1, 90 (1972).

    Google Scholar 

  27. Deych, M. Ye., G. A. Saltanov, V. F. Stepanchuk, andV. M. Orlova: Study of Energy Losses in Condensation Discontinuities and Shocks in Flow of Wet Steam. Energetika i Transport5, 93 (1968). Also Heat Transfer (Soviet Research)1, 135 (1969).

    Google Scholar 

  28. Deych, M. Ye., G. A. Kurshakov, G. A. Saltanov, andI. A. Yatcheni: A Study of the Structure of Two-Phase Flow Behind a Condensation Shock in Supersonic Nozzles. Energetika i Transport2 (1968). Also Heat Transfer (Soviet Research)1, 95 (1969).

  29. Dunning, W. J.: General and Theoretical Introduction, Chap. 1, p. 1, l.c. [100].Zettlemoyer, A. C.: Ed., Nucleation. New York: Marcel Dekker. 1969.

  30. Eber, G: Private communication September 4, 1972.

  31. Eber, G., andK. H. Gruenewald: Schlieren-Photography of Condensation Disturbances in the 40×40 cm Peenemünde Supersonic Wind Tunnels. Private Communication (1941/42).

  32. Feder, J., K. C. Russell, J. Lothe, andG. M. Pound: Homogeneous Nucleation and Growth of Droplets in Vapors. Adv. Phys. (Suppl. Phil. Mag.)15, 111 (1966).

    Google Scholar 

  33. Glass, I. I., andG. N. Patterson: A Theoretical and Experimental Study of Shock Tube Flows, J. Aeronaut, Sci.22, 73 (1955). Also Private communication to Heybey and Reed (1955).

    Google Scholar 

  34. Gyarmathy, G.: Kondensationsstoß-Diagramme für Wasserdampfströmungen. Forsch. Ing. Wes.29, 105 (1963).

    Google Scholar 

  35. Gyarmathy, G., andH. Meyer: Spontane Kondensation (VDI Forsch.-Heft 508). Düsseldorf: VDI Verlag. 1965.

    Google Scholar 

  36. Hall, N. A.: Thermodynamics of Fluid Flow. New York: Prentice Hall. 1951.

    Google Scholar 

  37. Hermann, R.: Der Kondensationsstoß in Überschall-Windkanaldüsen. Luftfahrtforsch.19, 183 (1942).

    Google Scholar 

  38. Heybey, W.: Analytische Behandlung des geraden Kondensationsstoßes. Heeresversuchsstelle Peenemünde, Archiv. Nr. 66/72 (1942). Also: NACA TM 1174 (1947).

  39. Heybey, W.: Private communications October 31 and December 9, 1972.

  40. Heybey, W. H., andS. G. Reed, Jr. Weak Detonations and Condensation Shocks. J. Appl. Phys.26, 969 (1955).

    Google Scholar 

  41. Hill, P. G.: Condensation of Water Vapor During Supersonic Expansion in Nozzles. J. Fluid Mech.25, 593 (1966).

    Google Scholar 

  42. Homer, J. B., I. R. Hurle, andP. J. Swain: Shock-Tube Study of the Nucleation of Lead Vapour. Nature229, 251 (1971).

    Google Scholar 

  43. Homer, J. B., andI. R. Hurle: Shock-Tube Studies on the Decomposition of Tetramethyl-Lead and the Formation of Lead Oxide Particles. Proc. R. Soc. Lond.A 327 61 (1972).

    Google Scholar 

  44. Jungclaus, G., andO. van Raay: Brechnung der Strömung in Lavaldüsen mit beliebig verteilter Wärmezufuhr. Ing. Arch.36, 226 (1967).

    Google Scholar 

  45. Kawada, H., andY. Mori: A Shock Tube Study of Condensation Kinetics. Bull. Jap. Soc. Mech. Eng.16, 1053 (1973).

    Google Scholar 

  46. Kung, R. T. V., andS. H. Bauer: Nucleation Rates in Fe Vapor: Condensation to Liquid in Shock Tube Flow. Proc. Eighth Int. Shock Tube Symp. London, Paper No 61. (Stollery, J. L., A. G. Gaydon, andP. R. Owen, eds.). London: Chapman and Hall. 1971.

    Google Scholar 

  47. Kyrchakov, A. V., G. A. Saltanov, andR. A. Tkalenko: Analytical and Experimental Analysis of Condensation in a Centered Rarefaction Wave (in Russian), P.M.T.F. No. 5, 117 (1971).

    Google Scholar 

  48. Lee, J. H., R. I. Soloukhin andA. K. Oppenheim: Current Views on Gaseous Detonation. Astronautica Acta14, 565 (1969).

    Google Scholar 

  49. Liepmann, H. W., andA. Roshko: Elements of Gasdynamics. New York: J. Wiley. 1957.

    Google Scholar 

  50. Lothe, J., andG. M. Pound: Statistical Mechanics of Nucleation. Chap. 3, p. 109, l.c. [100].Zettlemoyer, A. C.: Ed., Nucleation. New York: Marcel Dekker. 1969.

  51. Lukasiewicz, J., andJ. K. Royle: Effects of Air Humidity in Supersonic Wind Tunnels. Aeronaut. Res. Council, Repts. and Mem. No. 2563 (1948).

  52. Marble, F. E.: Some Gasdynamic Problems in the Flow of Condensing Vapors. Astronautica Acta14, 585 (1969).

    Google Scholar 

  53. Marble, F. E.: Dynamics of Dusty Gases. Ann. Rev. Fluid Mech.2, 397 (1970).

    Google Scholar 

  54. Oppenheim, A. K., E. A. Lundstrom, A. L. Kuhl, andM. M. Kamel: A Systematic Exposition of the Conservation Equations for Blast Waves. Trans. ASME, J. Appl. Mech. Ser. E,38, 783 (1971).

    Google Scholar 

  55. Oswatitsch, K.: Die Dispersion und Absorption des Schalles in Wolken. Phys. Z.42 365 (1941).

    Google Scholar 

  56. Oswatitsch, K.: Die Nebelbildung in Windkanälen und ihr Einfluß auf Modellversuche. Jahrbuch der deutschen Luftfahrtforsch. I, 692 (1941).

    Google Scholar 

  57. Oswatitsch, K.: Kondensationserscheinungen in Überschalldüsen. ZAMM22, 1 (1942).

    Google Scholar 

  58. Oswatitsch, K.: Kondensationsstöße in Lavaldüsen. Z. Ver. deutsch. Ing.86, 702 (1942).

    Google Scholar 

  59. Oswatitsch, K.: Gasdynamik. Wien: Springer. 1952.

    Google Scholar 

  60. Oswatitsch, K.: Private communication June 15, 1970.

  61. Penner, S. S., andF. A. Williams: Detonation and Two-Phase Flow. Progress Astron. Aero.6. New York: Academic Press. 1962.

    Google Scholar 

  62. Petty, D. G., P. A. Blythe, andC. J. Shih: Near-equilibrium Nozzle Flows of a Condensible Vapor. Tech. Report No. CAM-110-25 (BRL CR NO. 85). (1972) (Available as AD-756471 from the National Technical Information Service, Springfield, VA 22151.)

  63. Pierce, T., P. M. Shermann, D. D. McBride: Condensation of Argon in a Supersonic Stream. Astronautica Acta16, 1 (1971).

    Google Scholar 

  64. Pouring, A. A.: Thermal Choking and Condensation in Nozzles. Phys. Fluids8, 1802 (1965).

    Google Scholar 

  65. Reed, Jr., S. G.: Some Examples of Weak Detonations. J. Chem. Phys.20, 539 (1952).

    Google Scholar 

  66. Roberts, R.: A Light Scattering Investigation of Droplet Growth in Nozzle Condensation. Doctoral Dissertation, Massachusetts Institute of Technology, Cambridge, Mass. (1969).

    Google Scholar 

  67. Ross, F. W.: Propagation in a Compressible Fluid of Finite Oblique Disturbances with Energy Exchange and Change of State. J. Appl. Phys.22, 1414 (1951).

    Google Scholar 

  68. Rott, N., B. Chaix, andZ. Plaskowski: Ein Diagramm zur Beurteilung der Feuchtigkeits-Verhältnisse in rascher Luftströmung. Schweiz. Bauzeitung66 (1948).

  69. Rudinger, G.: Relaxation in Gas-Particle Flow, Nonequilibrium Flows (Wegener, P. P., ed.), Vol. 1, Part1, p. 119. New York: Marcel Dekker. 1969.

    Google Scholar 

  70. Samaras, D. G.: The Problem of Heat Addition in Ducts. Can. J. Res.24, 272 (1946).

    Google Scholar 

  71. Schmidt, B.: Beobachtungen über das Verhalten der durch Wasserdampfkondensation ausgelösten Störungen in einer Überschall-Windkanaldüse. Jahrbuch WGLR, 160 (1962).

  72. Shapiro, A.: The Dynamics and Thermodynamics of Compressible Fluid Flow, Vol. I. New York: Ronald Press Co. 1953.

    Google Scholar 

  73. Shapiro, A. H., andW. R. Hawthorne: The Mechanics and Thermodynamics of Steady One-Dimensional Gas Flow. J. Appl. Mech.14, A317 (1947).

    Google Scholar 

  74. Smith, L. T.: An Experimental Investigation of Two Phase Wedge and Prandtl-Meyer Flow. Doctoral Dissertation, Yale University, New Haven, Conn. (1970).

    Google Scholar 

  75. Smith, L. T.: Experimental Investigation of the Expansion of Moist Air Around a Sharp Corner. AIAA J.9, 2035 (1971).

    Google Scholar 

  76. Soo, S. L.: Fluid Dynamics of Multiphase Systems. Waltham, Mass.: Blaisdell Publishing Co. 1967.

    Google Scholar 

  77. Steffen, H. H.: Theoretical and Experimental Investigation of Two-Dimensional Flow Around a Corner with Heat Addition. (Strömungsmechanik und Strömungsmaschinen, Heft 6, S. 40.) Karlsruhe: Verlag G. Braun. 1967.

    Google Scholar 

  78. Stein, G. D., andP. P. Wegener: Experiments on the Number of Particles Formed by Homogeneous Nucleation in the Vapor Phase. J. Chem. Phys.46, 3685 (1967).

    Google Scholar 

  79. Stein, G. D.: Angular and Wavelength Dependence of the Light Scattered from a Cloud of Particles Formed by Homogeneous Nucleation. J. Chem. Phys.51, 938 (1969).

    Google Scholar 

  80. Stever, H. G.: Condensation Phenomena in High Speed Flows, Fundamentals of Gasdynamics, Vol. III (Emmons, H. W., ed.), p. 526. Princeton, N. J.: Princeton University Press. 1958.

    Google Scholar 

  81. Stodola, A.: Steam and Gas Turbines. New York: McGraw-Hill. 1927.

    Google Scholar 

  82. Szczeniowski, B.: Flow of Gas Through a Tube of Constant Cross-Section with Heat Exchange Through the Tube Walls. Can. J. Res.23, 1 (1945).

    Google Scholar 

  83. Taylor, G. I.: Pitot Pressures in Moist Air. Aero. Res. Counc., Tech. Rep. for the year 1945, Reports and Memoranda No. 2248, p 180, London 1955.

  84. Thomann, H.: Size of Ice Crystals Formed During Rapid Expansions of Humid Air. Phys. Fluids9, 896 (1966).

    Google Scholar 

  85. Tkalenko, R. A.: On Spontaneous Condensation in a Supersonic Flow Around a Corner (in Russian). Mechanika Zhyidkosti i Gasa, No. 5, 73 (1970).

    Google Scholar 

  86. Volmer, M., andA. Weber: Keimbildung in übersättigten Gebilden. Z. Phys. Chem.119, 277 (1926).

    Google Scholar 

  87. Volta Reale Accademia D'Italia, Fondazione Alessandro Volta. Atti dei Convegni 5. Le Alte Velocita in Aviazone. 30 Sept. to 6 Oct. 1935—XIII, Roma. 1st ed. 1936-XIV; 2nd ed., 1940-XIX (1935).

  88. Wegener, P. P., andG. Lundquist: Condensation of Water Vapor in the Shock Tube Below 150°K. J. Appl. Phys.22, 233 (1951).

    Google Scholar 

  89. Wegener, P. P.: Water Vapor Condensation Process in Supersonic Nozzles. J. Appl. Phys.25, 1485 (1954).

    Google Scholar 

  90. Wegener, P. P. andL. M. Mack: Condensation in Supersonic and Hypersonic Wind Tunnels. Adv. Appl. Mech.5 p. 307. New York: Academic Press. 1958.

    Google Scholar 

  91. Wegener, P. P.: Experiments on the Departure From Chemical Equilibrium in a Supersonic Flow. ARS J.30, 322 (1960).

    Google Scholar 

  92. Wegener, P. P.: Condensation Phenomena in Nozzles, Progress Astron. Aero.15, 701. New York: Academic Press. 1964.

    Google Scholar 

  93. Wegener, P. P., andA. A. Pouring: Experiments on Condensation of Water Vapor by Homogeneous Nucleation in Nozzles. Phys. Fluids7, 352 (1964).

    Google Scholar 

  94. Wegener, P. P.: Gasdynamics of Expansion Flows with Condensation, and Homogeneous Nucleation of Water Vapor. Nonequilibrium Flows (Wegener, P. P., ed.), Vol. 1, Part 1, p. 163. New York: Marcel Dekker. 1969.

    Google Scholar 

  95. Wegener, P. P., andJ.-Y. Parlange: Condensation by Homogeneous Nucleation in the Vapor Phase. Naturwissenschaften57, 525 (1970).

    Google Scholar 

  96. Wegener, P. P., J. A. Clumpner, andB. J. C. Wu: Homogeneous Nucleation and Growth of Ethanol Drops in Supersonic Flow. Phys. Fluids15, 1869 (1972).

    Google Scholar 

  97. Wegener, P. P., andD. J. Cagliostro: Periodic Nozzle Flow with Heat Addition. Combustion Sci. and Tech.6, 269 (1973).

    Google Scholar 

  98. Willmarth, W. W., andH. T. Nagamatsu: The Condensation of Nitrogen in a Hypersonic Nozzle. J. Appl. Phys.23, 1089 (1952).

    Google Scholar 

  99. Wilson, C. T. R.: Condensation of Water Vapor in the Presence of Dust-Free Air and Other Gases, Trans. Roy. Soc. (London)189, 265 (1897).

    Google Scholar 

  100. Zettlemoyer, A. C.: Ed., Nucleation. New York: Marcel Dekker. 1969.

    Google Scholar 

  101. Zierep, J., andS. Lin: Ein Ähnlichkeitsgesetz für instationäre Kondensationsvorgänge in Lavaldüsen. Forsch. Ing. Wesen34, 97 (1968).

    Google Scholar 

  102. Zimet, E.: Yale University, Private Communication (1971).

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 15 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wegener, P.P. Nonequilibrium flow with condensation. Acta Mechanica 21, 65–91 (1975). https://doi.org/10.1007/BF01172829

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01172829

Keywords

Navigation