Skip to main content
Log in

Iron environment in a montmorillonite from Gola del Furlo (Marche, Italy). A synchrotron radiation XANES and a Mössbauer study

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The iron environment and oxidation state has been determined by XANES spectroscopy in a montmorillonite sample from Gola del Furlo (Marche, Italy). A comparison with the XANES spectra of Fe2− in a natural hematite from Elba (Italy) and of Fe 21 in a synthetic Fe[C03] (the fine structures in the spectra of which have also been clarified in detail on the basis of the known crystal structures) permits recognizing that in this sheet silicate Fe is mostly in the trivalent oxidation state and in a distorted octahedral coordination. Mössbauer spectroscopy confirms the XANES assignment, but it also shows that minor octahedral Fee+ is present besides the predominant octahedral Fe3—.

Zusammenfassung

Synchroton Radiation XANES und Mössbauer-Studien zur Vertielung des Eisens im Montmorillonit aus Gola del Furlo(Marche, Italien) Die Verteilung und die Oxidationsstufe des Eisens eines Montmorillonites aus Gola del Furlo (Marche, Italien) wurden untersucht. Ein Vergleich der XANES Spektren dieses Schichtsilikates mit denen von FeFe3+ eines natürlichen Hämatites von Elba (Italien) und von Fe2+ eines synthetischen Fe[C03], wobei die Details der Spektren auf Grund der Kenntnis der bekannten Kristallstruktur geklärt werden konnten, zeigt, daß Eisen großteils in dreiwertiger Form und in verzerrter oktaedrischer Koordination vorliegt. Mössbauer-Studien bestätigen die Ergebnisse der XANES Untersuchungen, zeigen aber auch, daß untergeordnet Fe e+ an Stelle von Fe3+ in der oktaedrischen Position eingebaut wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey SW (1989) Introduction. In: Bailey SW (ed) Hydrous phyllosilicates (exclusive of micas). Rev Mineral 19:1–8

  • Besson G, Bookin AS, Dainyak LG, Rautureau M, Tsipursky SI, Tchoubar C, Drits VA (1983) Use of diffraction and Mbssbauer methods for the structural and crystallochemical characterization of nontronites. J Appl Cryst 16: 374–383

    Google Scholar 

  • Binsted N, Greaves GN, Henderson CMB (1986) Fe K-edge X-ray absorption spectroscopy of silicate minerals and glasses. J Physique C 8, 12, 47: 837–840

    Google Scholar 

  • Blake RL, Messevick RE, Zoltai T, Finger LW (1966) Refinement of the hematite structure. Am Mineral 51: 123–129

    Google Scholar 

  • Bonnin D, Muller S, Calas G (1982) Le fer dans le kaolins. Etude par spectrométrie RPE, Mössbauer, EXAFS. Bull Minéral 105:467–475

    Google Scholar 

  • ——, ——,Calas G, Suquet H, Pezerat H (1985) Site occupancy of Fe3+ in Garfield nontronite: a spectroscopic study. Phys Chem Minerals 12: 55–64

    Google Scholar 

  • Brigatti MF (1983) Relationships between composition and structure in Fe-rich smectites. Clay Miner 18:177–186

    Google Scholar 

  • —— (1981) A mathematical model to distinguish the members of the dioctahedral smectite series. Clay Miner 16: 81–89

    Google Scholar 

  • Calas G, Bassett WA, Petiau J, Steinberg M, Tchoubar D, Zarka A (1984) Some mineralogical applications of synchrotron radiation. Phys Chem Minerals 11: 17–36

    Google Scholar 

  • Cardile CM (1987) Structural studies of montmorillonites by57 Fe Mössbauer spectroscopy. Clay Miner 22: 387–394

    Google Scholar 

  • —— (1985) Structural studies of nontronites with different iron contents by 57 Fe Mössbauer spectroscopy. Clays and Clay Miner 33: 295–300

    Google Scholar 

  • Combes JM, Manceau A, Calas G, Bottero J Y (1989) Formation of ferric oxides from aqueous solutions: a polyhedral approach by X-ray absorption spectroscopy: I. Hydrolysis and formation of ferric gels. Geochim Cosmochim Acta 53: 583–594

    Google Scholar 

  • Davoli I, Paris E, Mottana A (1988) XANES analysis of M1–M2 cations in monoclinic pyroxenes. In:Augustithis SS (ed) Synchrotron radiation applications in mineralogy and petrography. Theophrastus, Athens, pp 97–131

    Google Scholar 

  • Dräger G, Frahm R, Materlik G, Brümmer O (1988) On the multipole character of the X-ray transition in the pre-edge structure of Fe K absorption spectra. An experimental study. Phys Stat Sol (b) 149: 287–294

    Google Scholar 

  • Dyar MD (1984) Precision and interlaboratory reproducibility of measurements in the Mössbauer effect in minerals. Am Mineral 69: 1127–1144

    Google Scholar 

  • —— (1987) A review of the Mössbauer data on trioctahedral micas: evidence for tetrahedral Fe3+ and cation ordering. Am Mineral 72:102–112

    Google Scholar 

  • Effenberger H, Mereiter K, Zemann J (1981) Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithsonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates. Z Krist 130: 233–243

    Google Scholar 

  • Fasiska EJ (1967) Structural aspects of the oxides and oxyhydroxides of iron. Corrosion Sci 7: 833–839

    Google Scholar 

  • Fleischer M (1987) Glossary of mineral species, 5th edition. Mineralogical Record, Tucson Goodman BA (1978) The Mössbauer spectra of nontronites: consideration of an alternative assignment. Clays and Clay Miner 26: 176–177

    Google Scholar 

  • Fleischer M (1981) Mössbauer spectroscopy. In:Stucki JW, Banwart WL (eds) Advanced chemical methods for soil and clay minerals research. D. Reidel Publishing Co., Dordrecht, pp 1–92

    Google Scholar 

  • —— (1976) A Mössbauer and I.R. spectroscopic study of the structure of nontronite. Clays and Clay Miner 24: 53–59

    Google Scholar 

  • Greenwood NN, Gibb TD (1971) Mössbauer spectroscopy. Chapman & Hall, London Güven N (1989) Smectites. In: Bailey SW (ed) Hydrous phyllosilicates (exclusive of micas). Rev Mineral 19: 497–559

    Google Scholar 

  • Heller-Kallai L, Rozenson I (1981) The use of Mössbauer spectroscopy of iron in clay mineralogy. Phys Chem Minerals 7: 223–238

    Google Scholar 

  • Helsen A, Goodman BA (1983) Characterization of iron(II)- and iron(III)-exchanged montmorillonite and hectorite using the Mössbauer effect. Clay Miner 18: 117–125

    Google Scholar 

  • Johnston JH, Cardile CM (1985) Iron sites in nontronite and the effect of interlayer cations from Mössbauer spectra. Clays and Clay Miner 33: 21–30

    Google Scholar 

  • —— (1987) Iron substitution in montmorillonite, illite, and glauconite by57 Fe Mössbauer spectroscopy. Clays and Clay Miner 35: 170–176

    Google Scholar 

  • Lindsley DH (1976) The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides. In:Rumble D (ed) Oxide minerals. Rev Mineral 3: 11–160Mattias P (1983) Bentonites in Italy. Their occurrence and genesis. Proc 5th Meeting European Clay Group, Praha

  • —— (1988) Segnalazione di un livello bentonitico nella Scaglia Rossa campaniano-cretacica presso la Gola del Furlo nell'Appennino marchigiano (Acqualagna, Pesaro). Min Pet Acta 31: 243–258

    Google Scholar 

  • Natoli CL (1984) Distance dependence of continuum and bound state of excitonic resonances in X-ray absorption near edge structure (XANES). In:Hodgson KO et al. (eds) EXAFS and Near-Edge Structure 111. Springer Proc. Phys. 2. Springer, Berlin Heidelberg New York, pp 38–42

    Google Scholar 

  • Osthaus BB (1954) Chemical determination of tetrahedral ions in nontronite and montmorillonite. In:Swineford A, Plummer N (eds) Clays and Clay Miner, Proc. 2nd Nat]. Conf. Columbia, Missouri, 1953. Natl. Acad. Sci. Natl. Res. Council Publ. 327, Washington, D.C., pp 404–417

    Google Scholar 

  • Rozenson I, Heller-Kallai L (1977) Mössbauer spectra of dioctahedral smectites. Clays and Clay Miner 25: 94–101

    Google Scholar 

  • Savoia A (1988) Frascati synchrotron radiation facility. Synchrotron Rad News 1: 10–13

    Google Scholar 

  • Sherman DM, Vergo N (1988) Optical (diffuse reflectance) and Mössbauer spectroscopical study of nontronite and related Fe-bearing smectites. Am Mineral 73: 1346–1354

    Google Scholar 

  • Smyth JR, Bish DL (1988) Crystal structures and cation sites of the rock-forming minerals. Allen & Unwin, Boston

    Google Scholar 

  • Stucki JW (1988) Structural iron in smectites. In:Stucki JW, Goodman BA, Schwertmann U (eds) Iron in soils ad clay minerals. D. Reidel Publishing Co., Dordrecht, pp 625–664

    Google Scholar 

  • Waychunas GA, Rossman GR (1983) Spectroscopic standard for tetrahedrally coordinated ferric iron: gamma LiA102: Fe3. Phys Chem Minerals 9: 212–215

    Google Scholar 

  • Waychunas GA, Apted MJ, Brown GE (1983) X-ray K-edge absorption spectra of Fe minerals and model compounds: near-edge structure. Phys Chem Minerals 10: 1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paris, E., Mottana, A. & Mattias, P. Iron environment in a montmorillonite from Gola del Furlo (Marche, Italy). A synchrotron radiation XANES and a Mössbauer study. Mineralogy and Petrology 45, 105–117 (1991). https://doi.org/10.1007/BF01164598

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01164598

Keywords

Navigation