Skip to main content
Log in

Analysis of the deformation of gel-spun polyethylene fibres using Raman spectroscopy

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Raman spectroscopy has been used to investigate molecular deformation in a number of high-performance gel-spun polyethylene (PE) fibres. Well-defined Raman spectra can be obtained for the fibres and the study has concentrated upon the symmetric C-C stretching mode (1128 cm−1). During mechanical deformation, the Raman spectra show the existence of a bimodal molecular stress distribution in the crystalline phase resulting in splitting of the Raman band. The changes in the Raman band peak position and area with strain for different modes of deformation, including stress relaxation and creep, have indicated the molecular response of the material to stress is highly complicated. This information, however, is particularly useful in analysing the molecular deformation both quantitatively and qualitatively and it is shown that the Young's modulus of the fibres is related to both the relative areas of the two Raman bands and their rate of shift per unit strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Lemstra andR. Kirschbaum, in “Developments in Oriented Polymers 2,” edited by I. M. Ward (Elsevier Applied Science, London, 1987).

    Google Scholar 

  2. Allied Corp., US Pat. 4413 110.

  3. Dyneema VoF Information Brochure, “Dyneema SK60: High Strength/High Modulus Fiber, Properties & Applications”, (DSM, 1987).

  4. Dyneema VoF Information Brochure, “Dyneema SK60: High Performance Fibers in Composites” (DSM, 1988).

  5. E. H. M. Van Gorp andJ. L. J. Van Dingenen, in “Innovative Technologies in Industrial Textiles: Textile Institute Industrial, Technical and Engineering”, Textile Conferences, 5–6 February 1990.

  6. K. F. Mulder, in “High Performance Plastics”, August 1991, edited by A. Duckett and I. Guy (Elsevier Applied Science, Oxford) p. 1.

    Google Scholar 

  7. R. J. Young, in “Comprehensive Polymer Science: The Synthesis, Characterization, Reactions and Applications of Polymers”, Vol. 2, “Polymer Properties”, edited by C. Booth and C. Price (Pergamon Press, Oxford) p. 515.

  8. L. Holliday, in “Structure and Properties of Oriented Polymers”, edited by I. M. Ward (Applied Science, London, 1975) p. 242.

    Google Scholar 

  9. V. K. Mitra,J. Chem. Phys. 66 (1977) 2731.

    Google Scholar 

  10. D. N. Batchelder andD. Bloor,J. Polym. Sci. Polym. Phys. Ed. 17 (1979) 569.

    Google Scholar 

  11. C. Galiotis, R. J. Young andD. N. Batchelder,J. Polym. Sci. Polym. Phys. 21 (1983) 2483.

    Google Scholar 

  12. R. J. Young, in “Developments in Oriented Polymers 2”, edited by I. M. Ward (Elsevier Applied Science, London, 1987) p. 1.

    Google Scholar 

  13. C. Galiotis, I. M. Robinson, R. J. Young, B. J. E. Smith andD. N. Batchelder,Polym. Commun. 26 (1985) 354.

    Google Scholar 

  14. S. van der Zwagg, M. G. Northolt, R. J. Young, I. M. Robinson, C. Galiotis andD. N. Batchelder,ibid. 28 (1987) 276.

    Google Scholar 

  15. R. J. Young, D. Lu andR. J. Day,Polym. Int. 24 (1991) 71.

    Google Scholar 

  16. R. J. Young, R. J. Day andM. Zakikhani,J. Mater. Sci. 25 (1990) 127.

    Google Scholar 

  17. R. J. Day, I. M. Robinson, M. Zakikhani andR. J. Young,Polymer 28 (1987) 1833.

    Google Scholar 

  18. K. Tashiro, G. Wu andM. Kobayashi,ibid. 29 (1988) 1768.

    Google Scholar 

  19. K. Prasad andD. T. Grubb,J. Polym. Sci. Polym. Phys. Ed. 27 (1989) 381.

    Google Scholar 

  20. B. J. Kip, M. C. P. Van Eijk andR. J. Meier ibid. 29 (1991) 99.

    Google Scholar 

  21. J. A. H. M. Moonen, W. A. C. Roovers, R. J. Meier andB. J. Kip,J. Polym. Sci. Polym. Phys. 30 (1992) 361.

    Google Scholar 

  22. D. T. Grubb andZ. Li,Polym. 30 (1992) 2587.

    Google Scholar 

  23. Allied-Signal Inc., private communication.

  24. R. G. C. Arridge, P. J. Barham, C. J. Farrell andA. Keller,J. Mater. Sci. Lett. 11 (1976) 788.

    Google Scholar 

  25. D. C. Bassett, in “Developments in Crystalline Polymers, 2”, edited by D. C. Bassett (Elsevier Applied Science, London, 1988) p. 67.

    Google Scholar 

  26. J. Brandrup andG. H. Immergut, “Polymer Handbook”, 3rd edn (Wiley Interscience, New York, 1989).

    Google Scholar 

  27. D. N. Batchelder,Eur. Spectrosc. News 80 (1988) 28.

    Google Scholar 

  28. W. F. Wong, PhD thesis, Victoria University of Manchester, (1992).

  29. R. J. Young, D. Lu, R. J. Day, andW. F. Knoff andH. A. Davis,J. Mater. Sci. 21 (1992) 5431.

    Google Scholar 

  30. W. F. Wong andR. J. Young,ibid. 28 (1993) 0000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, W.F., Young, R.J. Analysis of the deformation of gel-spun polyethylene fibres using Raman spectroscopy. J Mater Sci 29, 510–519 (1994). https://doi.org/10.1007/BF01162515

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01162515

Keywords

Navigation