Skip to main content
Log in

Equivariant Morse theory of theN-body problem: Application to potential surfaces in chemistry

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

The Morse inequalities linking the critical points of a potential function on the whole configuration space and its restrictions to either planar or linear configurations are derived from the Morse theory in its equivariant form. Brute potential functions arising from standard models of quantum chemistry need eventually morsification which can be achieved without altering the main chemical significances of the potential. Illustrative applications follow in the case of magnesium clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Born M, Oppenheimer JR (1927) Ann Phys 84:457

    Google Scholar 

  2. Morse M (1934) Calculus of variation in the large. Am Math Soc Colloquium Pub 18

  3. Spanier EG (1966) Algebraic topology, McGraw Hill, NY

    Google Scholar 

  4. Greenberg M (1966) Lectures on algebraic topology. Benjamin, NY

    Google Scholar 

  5. Palais RS (1970) Critical point theory and the minimax principle. Global Analysis. Proc. Sym Pure Math 15:198 A.M.S. Providence

    Google Scholar 

  6. Mezey PG (1988) Chem Phys Lett 82:100; 86:562 (1982)

    Google Scholar 

  7. Liotard D (1979) Thesis, Pau

  8. Liotard D (1983) In: (eds. Maruani, Serre) Symmetries and properties of non-rigid molecules, p. 323, Elsevier, NY; Iratcabal P, Liotard D (1988) J Am Chem Soc 110:4919

    Google Scholar 

  9. Peterson MR, Gsizmadia IG, Sharpe RW (1983) J Mol Struct (Theochem) 94:127

    Google Scholar 

  10. Mezey PG (1987) Potential energy hypersurfaces, Elsevier, NY

    Google Scholar 

  11. Mezey PG (1980) Theor Chim Acta 54:95

    Google Scholar 

  12. Fadell E, Neuwirth L (1962) Math Scand 10:111

    Google Scholar 

  13. Pacella F (1987) Arch. rat. Mech. Anal. 97:59

    Google Scholar 

  14. Palmore JI (1976) Lett Math phys 1:119 and ref. therein

    Google Scholar 

  15. Cardy H, Dargelos A, Liotard D, Poquet E (1983) Chem Phys 77:287

    Google Scholar 

  16. Liotard D, Roche M (1987) J Comp Chem 8:850

    Google Scholar 

  17. Pacella F (1986) Trans Am Math Soc 297:41

    Google Scholar 

  18. Gilmore R (1981) Catastrophe theory for scientists and engineers, Wiley, NY

    Google Scholar 

  19. Durand G (1989) J Chem Phys 91:6225

    Google Scholar 

  20. AMPAC, version 2.1, Dewar research group, University of Texas at Austin, 78715 Austin (TX)

  21. Liotard D, Penot JP (1981) In: (ed. Della-Dora), Numerical methods in the study of critical phenomena, p 213, Springer, Berlin Heidelberg New York; Liotard D (1992) Int J Quant Chem 44:723

    Google Scholar 

  22. Bockisch F, Liotard D, Rayez JC, Duguay B (1992) Int J Quant Chem 44:619

    Google Scholar 

  23. Davidson E. R (1977) J Am Chem Soc 99:397

    Google Scholar 

  24. Mezey P. G (1977) In: (ed. Czismadia), Applications of M.O. theory in organic chemistry, p 127, Elsevier

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liotard, D., Rérat, M. Equivariant Morse theory of theN-body problem: Application to potential surfaces in chemistry. Theoret. Chim. Acta 86, 297–313 (1993). https://doi.org/10.1007/BF01128519

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01128519

Key words

Navigation