Skip to main content
Log in

Restricted Hartree-Fock and unrestricted Hartree-Fock as reference states in many-body perturbation theory: a critical comparison of the two approaches

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

The paper deals with two topics related to the problem which reference state is better for many-body perturbation theory: restricted Hartree-Fock (RHF) or unrestricted Hartree-Fock (UHF)? The first topic concerns the potential surfaces. Several examples are presented to show shortcomings of the two approaches and a simple way is presented which seems to give a useful potential curve in the whole range of interatomic distances by a composition of RHF and UHF potential curves. The second topic concerns the many-body perturbation theory for open-shell systems in the RHF formalism. The method is critically examined and compared with the ordinary many-body perturbation theory using UHF as the reference. This examination of many-body techniques provides also some insight into the problems inherent of the SCF theory: spin contamination from higher multiplets, localization of orbitals, and self-consistency effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shavitt I, Rosenberg BJ, Palalikit S (1976) Int J Quant Chem Symp 10:33

    Google Scholar 

  2. Hubač I, Čársky P (1980) Phys Rev 22A:2392

    Google Scholar 

  3. Paldus J, Čížek J (1975) Adv Quantum Chem 9:105

    Google Scholar 

  4. Bartlett RJ, Silver DM (1976) in: Calais JL, Goscinski O, Linderberg J, Öhrn Y (eds) Quantum science, Plenum Press, New York, p 393

    Google Scholar 

  5. Pople JA, Binkley JS, Seeger R (1976) Int J Quant Chem Symp 10:1

    Google Scholar 

  6. Roos BO, Siegbahn PEM (1977) in: Schaefer III HF (ed) Modern theoretical chemistry Vol 3, Plenum Press, New York, p 277

    Google Scholar 

  7. Klimo V, Tiňo J (1980) Mol Phys 41:483

    Google Scholar 

  8. Klimo V, Tiňo J (1980) Mol Phys 46:541

    Google Scholar 

  9. Bartlett RJ, Purvis GD (1980) Phys Scripta 21:255

    Google Scholar 

  10. Bartlett RJ (1981) Ann Rev Phys Chem 32:359

    Google Scholar 

  11. Sosa C, Schlegel HB (1987) J Am Chem Soc 109:7007

    Google Scholar 

  12. Sosa C, Schlegel HB (1986) Int J Quant Chem 29:1001

    Google Scholar 

  13. Sosa C, Schlegel HB (1987) Int J Quant Chem 21:267

    Google Scholar 

  14. Schlegel HB (1986) J Chem Phys 84:4530

    Google Scholar 

  15. Duchovic RJ, Hase WL, Schlegel HB, Frisch MJ, Raghavachari K (1982) Chem Phys Lett 89:120

    Google Scholar 

  16. Brown FB, Truhlar DG (1985) Chem Phys Lett 113:441

    Google Scholar 

  17. Čársky P, Špirko V (1986) unpublished results

  18. Gerber WH, Schumacher E (1978) J Chem Phys 69:1692

    Google Scholar 

  19. Roothaan CCJ (1960) Rev Mod Phys 32:179

    Google Scholar 

  20. Cederbaum LS, Schirmer J (1974) Z Phys 271:221

    Google Scholar 

  21. Hubač I, Čársky P (1978) Top Curr Chem 75:97

    Google Scholar 

  22. Čársky P, Zahradník R, Hubač I, Urban V, Kellö V (1980) Theor Chim Acta 56:315

    Google Scholar 

  23. Čársky P, Hubač I (1981) Coll Czech Chem Commun 46:1324

    Google Scholar 

  24. McDowell K (1981) Int J Quantum Chem 19:271

    Google Scholar 

  25. Kvasnička V, Biskupič S, Laurinc V (1981) Mol Phys 42:1345

    Google Scholar 

  26. Wilson S (1982) Theor Chim Acta 61:343

    Google Scholar 

  27. Čársky P, Hubač I, Staemmler V (1982) Theor Chim Acta 60:445

    Google Scholar 

  28. Čársky P, Svrček M, Hubač I, Brown FB, Shavitt I (1982) Chem Phys Lett 85:17

    Google Scholar 

  29. Balková A (1985) Thesis, Slovak Academy of Sciences and Comenius University, Bratislava

  30. Hubač I, Sadlej AJ (1982) Czech J Phys B32:1116

    Google Scholar 

  31. Kelly HP (1969) Adv Chem Phys 14:129

    Google Scholar 

  32. Tuan DFT, Epstein ST, Hirschfelder JO (1966) J Chem Phys 44:431

    Google Scholar 

  33. Adamowicz L, Sadlej AJ (1978) Chem Phys Lett 53:337

    Google Scholar 

  34. Sadlej AJ (1979) J Phys Chem 83:1653

    Google Scholar 

  35. Sadlej AJ (1980) Acta Phys Polon A57:879

    Google Scholar 

  36. Bartlett RJ, Purvis III GD (1979) Phys Rev 20A:1313

    Google Scholar 

  37. Diner S, Malrieu JP, Claverie P (1969) Theor Chim Acta 13:1, 18

    Google Scholar 

  38. Kapuy E, Csépes Z, Kozmutza C (1983) Int J Quant Chem 23:981

    Google Scholar 

  39. Čížek J, Förner W, Ladik J (1983) Theor Chim Acta 64:107

    Google Scholar 

  40. Laidig WD, Purvis GD, Bartlett RJ (1985) J Phys Chem 89:2161

    Google Scholar 

  41. Diercksen GHF, Sadlej JA (1981) J Chem Phys 75:1253

    Google Scholar 

  42. Hubač I, Čársky P (1983) Int J Quant Chem 24:141

    Google Scholar 

  43. Musher JI (1967) J Chem Phys 46:369

    Google Scholar 

  44. Rossky PJ, Karplus M (1980) J Chem Phys 72:6085

    Google Scholar 

  45. Klimo V, Tiňo J (1984) Int J Quant Chem 25:733

    Google Scholar 

  46. Knowles PJ, Handy NC (1988) J Chem Phys 88:6991

    Google Scholar 

  47. Rittby M, Bartlett RJ (1988) J Phys Chem 92:3033

    Google Scholar 

  48. Watts J, Bartlett RJ (1990) J Chem Phys 93:6104

    Google Scholar 

  49. Sekino H, Bartlett RJ (1986) J Chem Physe 85:3945

    Google Scholar 

  50. Scuseria GE (1991) Chem Phys Lett 176:28

    Google Scholar 

  51. Neogrády P, Urban M, Hubač I (to be published)

  52. Wolinski K, Sellers HL, Pulay P (1987) Chem Phys Lett 140:225

    Google Scholar 

  53. Saebo S, Pulay P (1987) J Chem Phys 86:914

    Google Scholar 

  54. Pulay P, Saebo S (1986) in: Jorgensen P, Simons J (eds) Geometrical derivatives of energy surfaces and molecular properties. Reidel, Dordrecht, p 95

    Google Scholar 

  55. Pulay P, Saebo S (1986) Theoret Chim Acta 69:357

    Google Scholar 

  56. Gill PMW, Pople JA, Radom L (1988) J Chem Phys 89:7307

    Google Scholar 

  57. Purvis III GD, Sekino H, Bartlett RJ (1988) Coll Czech Chem Com 53:2203

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čársky, P., Hubač, I. Restricted Hartree-Fock and unrestricted Hartree-Fock as reference states in many-body perturbation theory: a critical comparison of the two approaches. Theoret. Chim. Acta 80, 407–425 (1991). https://doi.org/10.1007/BF01117420

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01117420

Key words

Navigation