Skip to main content
Log in

Phloem transport and differential unloading in pea seedlings after source and sink manipulations

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Phloem transport was investigated in pea seedlings after application of [14C]sucrose to the cotyledons. The accumulation of the label in segments of young seedlings shows a differential unloading along the plant axis. Shoot and root exhibit tip-to-base gradients of sink strength. In the primary root, the sink-strength profiles reflect not only the importance of the apical meristem, but show also the starting points of cambial activity and production of secondary vascular elements. Experiments including partial removal of the source and manipulations of the sink strength indicate that translocation of pea seedlings is sink-regulated and responds rapidly to changed apoplastic conditions in the apical root region. Here, a lowered water potential leads to an increase of phloem unloading that is suggested to supply the assimilate demand for the short-term osmoregulation of affected cells via the symplasmic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PCMBS:

parachloromercuribenzenesulfonic acid

References

  • Baker, D.A., Milburn, J.A., eds. (1989) Transport of photoassimilates Longman, Scientific & Technical, Harlow, UK

    Google Scholar 

  • Canny, M.J. (1973) Phloem translocation. Cambridge University Press

  • Delrot, S., Despeghel, J.-P., Bonnemain, J.-L. (1980) Phloem loading inVicia faba leaves: Effect of N-ethylmaleimide and parachloromercuribenzenesulfonic acid on H+ extrusion, K+ and sucrose uptake. Planta149, 144–148

    Google Scholar 

  • Dick, P.S., ap Rees, T. (1975) The pathway of sugar transport in roots ofPisum sativum. J. Exp. Bot.26, 305–314

    Google Scholar 

  • Enstone, D.E., Peterson, C.A. (1992) The apoplastic permeability of root apices. Can. J. Bot.70, 1502–1512

    Google Scholar 

  • Erwee, M.G., Goodwin, P.B. (1984) Characterization of theEgeria densa Planch, leaf symplast: Response to plasmolysis, deplasmolysis and to aromatic amino acids. Protoplasma122, 162–168

    Google Scholar 

  • Eschrich, W. (1989) Phloem unloading of photoassimilates. In: Transport of photoassimilates, pp. 206–263, Baker, D.A., Milburn, J.A., eds. Longman Scientific & Technical, Harlow, UK

    Google Scholar 

  • Farrar, J.F. (1985) Fluxes of carbon in roots of barley plants. New Phytol.99, 57–69

    Google Scholar 

  • Farrar, J.F., Minchin, P.E.H. (1991) Carbon partitioning in split root systems of barley — relation to metabolism. J. Exp. Bot.42, 1261–1269

    Google Scholar 

  • Geiger, D.R., Fondy, B.R. (1980) Response of phloem loading and export to rapid changes in sink demand. Ber. Dtsch. Bot. Ges.93, 177–186

    Google Scholar 

  • Grimm, E., Bernhardt, G., Rothe, K., Jacob, F. (1990) Mechanism of sucrose retrieval along the phloem path — a kinetic approach. Planta182, 480–485

    Google Scholar 

  • Heyser, W, Heyser, R., Eschrich, W., Leonard, O.A. (1976) The influence of externally applied organic substances on phloem translocation in detached maize leaves. Planta132, 269–277

    Google Scholar 

  • Ho, L.C., Grange, R.I., Shaw, A.F. (1989) Source/sink regulation. In: Transport of photoassimilates, pp. 306–343, Baker, D.A., Miburn, J.A., eds. Longman Scientific & Technical, Harlow, UK

    Google Scholar 

  • Itoh, K., Nakahara, K., Ishikawa, H., Ohta, E. Sakata, M. (1987a) Osmostic adjustment and osmotic constituents in roots of mung bean seedlings. Plant Cell Physiol.28, 397–403

    Google Scholar 

  • Itoh, K., Nakamura, Y, Kawata, H., Yamada, T., Ohta, E., Sakata, M. (1987b) Effect of osmotic stress on turgor pressure in mung bean root cells. Plant Cell Physiol.28, 987–994

    Google Scholar 

  • Kallarackal, J., Orlich, G., Schobert, C., Komor, E. (1989) Sucrose transport into the phloem ofRicinus communis L. seedlings as measured by the analysis of sieve-tube sap. Planta177, 327–335

    Google Scholar 

  • Kochian, L.V., Lucas, W.J. (1983) Potassium transport in corn roots. II. The significance of the root periphery. Plant Physiol.73, 208–215

    Google Scholar 

  • Lambers, H. (1988) Growth, respiration, exudation and symbiotic associations: the fate of carbon translocated to the roots. In: Root development and function (Soc. Exp. Biol. Seminar Series vol. 30), pp. 125–145, Gregory, P.J., Lake, J.V., Rose, D.A., eds. Cambridge

  • Lambers, H., van der Werf, A., Konnings, H. (1991) Respiratory patterns in roots in relation to their functioning. In: Plant roots: the hidden half, pp. 229–263, Waisel, Y., Eshel, A., Kafkafi, U., eds. Marcel Dekker, New York Basel Hong Kong

    Google Scholar 

  • Lee-Stadelmann, O.Y, Stadelmann, E.J. (1989) Plasmolysis and deplasmolysis. Methods Enzymol.174, 225–246

    Google Scholar 

  • M'Batchi, B., Delrot, S. (1984) Parachloromercuribenzenesulfonic Acid. A potential tool for differential labeling of the sucrose transporter. Plant Physiol.75, 154–160

    Google Scholar 

  • Meshcheryakov, A., Steudle, E., Komor, E. (1992) Gradients of turgor, osmotic pressure, and water potential in the cortex of the hypocotyl of growingRicinus seedlings. Plant Physiol.98, 840–852

    Google Scholar 

  • Milburn, J.A., Kallarackal, J. (1989) Physiological aspects of phloem translocation. In: Transport of photoassimilates, pp. 264–305, Baker, D.A., Milburn, J.A., eds. Longman Scientific & Technical, Harlow

    Google Scholar 

  • Minchin, P.E.H. (1979) The relationship between spatial and temporal tracer profiles in transport studies. J. Exp. Bot.30, 1171–1178

    Google Scholar 

  • Morrod, R.S. (1974) A new method for measuring the permeability of plant cell membranes using epidermis free leaf disks. J. Exp. Bot.25, 521–533

    Google Scholar 

  • Murphy, R. (1989) Water flow across the sieve tube boundary: estimating turgor and some implications for phloem loading and unloading. IV. Root tips and seed coats. Ann. Bot.63, 571–579

    Google Scholar 

  • Oparka, K.J., Prior, D.A.M. (1992) Direct evidence for pressure-generated closure of plasmodesmata. Plant J.2, 741–750

    Google Scholar 

  • Oparka, K.J., Wright, K.M. (1988) Influence of cell turgor on sucrose partitioning in potato tuber storage tissues. Planta175, 520–526

    Google Scholar 

  • Patrick, J.W. (1990) Sieve element unloading: cellular pathway, mechanism and control. Physiol. Plant.78, 298–308

    Google Scholar 

  • Schmalstig, J.G., Cosgrove, D.J. (1990) Coupling of solute transport and cell expansion in pea stems. Plant Physiol.94, 1625–1633

    PubMed  Google Scholar 

  • Schulz, A. (1986) Wound phloem in transition to bundle phloem in primary roots ofPisum sativum L. I. Development of bundle-leaving wound-sieve tubes. Protoplasma130, 12–26

    Google Scholar 

  • Schulz, A., Gersani, M. (1990) Regeneration of sucrose translocation in wounded roots of pea seedlings. J. Plant Physiol.136, 599–605

    Google Scholar 

  • Sharp, R.E., Silk, W.K., Hsiao, T.C. (1988) Growth of the maize primary root at low water potentials. Plant Physiol.87, 50–57

    Google Scholar 

  • Sharp, R.E., Hsiao, T.C., Silk, WK. (1990) Growth of the maize root at low water potentials. II. Role of growth and deposition of hexose and potassium in osmotic adjustment. Plant Physiol.93, 1337–1346

    Google Scholar 

  • Spollen, W.G., Sharp, R.E. (1991) Spatial distribution of turgor and root growth at low water potentials. Plant Physiol.96, 438–443

    Google Scholar 

  • Steudle, A. (1992) The biophysics of plant water: compartmentation, coupling with metabolic processes, and flow of water in plant roots. In: Water and life, pp. 173–203, Somero, G.N., Osmond, C.B., Bolis, C.L., eds. Springer, Berlin Heidelberg

    Google Scholar 

  • Torrey, J.G. (1965) Physiological bases of organization and development in the root. In: Handbuch der Pflanzenphysiologie, vol. XV, part 1: Differenzierung und Entwicklung, pp. 1256–1327, Ruhland, W., ed. Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Wanner, H. (1950) Histologische und physiologische Gradienten in der Wurzelspitze. Ber. Schweiz. Botan. Gesellsch.60, 404–412

    Google Scholar 

  • Warmbrodt, R.D. (1987) Solute concentrations in the phloem and apex of the root ofZea mays. Am. J. Bot.74, 394–402

    Google Scholar 

  • Westgate, M.E., Boyer, J.S. (1985) Osmotic adjustment and the inhibition of leaf, root, stem and silk growth at low water potentials in maize. Planta164, 540–549

    Google Scholar 

  • Willenbrink, J., Doll, S., Getz, H.-P., Meyer, S. (1984) Zuckeraufnahme in isolierten Vakuolen und Protoplasten aus dem Speichergewebe von Beta-Rüben. Ber. Deutsch. Bot. Ges.97, 27–39

    Google Scholar 

  • Williams, J.H.H., Minchin, P.E.H., Farrar, J.F. (1991) Carbon partitioning in split root systems of barley: The effects of osmotica. J. Exp. Bot.42, 453–460

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Discussions with Prof. R. Kollmann, Botanisches Institut, Universität Kiel, and financial support from the Deutsche Forschungsgemeinschaft are gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, A. Phloem transport and differential unloading in pea seedlings after source and sink manipulations. Planta 192, 239–248 (1994). https://doi.org/10.1007/BF01089040

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01089040

Key words

Navigation