Skip to main content
Log in

A biometrical genetic approach to chromosome analysis inDrosophila: Detection of epistatic interactions in geotaxis

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Chromosome analysis has been widely used as a first step in eclucidating the genetic architecture of several behaviors ofDrosophila melanogaster. These chromosome studies have generally used incomplete designs or fairly simple statistical analyses. Here I reanalyze two data sets on geotaxis from Pyle (1978) and Ksander (1966) using a biometrical genetic design. Results from the biometrical genetic reanalysis suggest that individual differences in geotaxis might be due to genes on all three major chromosomes which show extensive epistatic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albornoz, A., Dominguez, A., Alcorte, E. and Santiago, E. (1987). Chromosomal effects in egg laying ofDrosophila melanogaster under different conditions.Heredity 58:457–462.

    Google Scholar 

  • Caligari, P. D. S., and Mather, K. (1975). Genotype-environment interaction. III. Interactions inDrosophila melanogaster.Proc. R. Soc. Lond. B 191:387–411.

    Google Scholar 

  • de Belle, J. S., Hilliker, A. J., and Sokolowski, M. B. (1989). Genetic localization of foraging (for): A major gene for larval behavior inDrosophila melanogaster.Genetics 123:157–163.

    Google Scholar 

  • Erlenmeyer-Kimling, L., Hirsch, J., and Weiss, J. (1962) Studies in experimental behavior genetics. III. Selection and hybridization analyses of individual differences in the sign of geotaxis.J. Comp. Physiol. Psychol. 55:722–731.

    Google Scholar 

  • Hirsch, J. (1959). Studies in experimental behavior genetics. II. Individual differences in geotaxis as a function of the chromosome variations in synthesizedDrosophila populations.J. Comp. Physiol. Psychol. 52:722–731.

    Google Scholar 

  • Hirsch, J., and Erlenmeyer-Kimling, L. (1962). Studies in experimental behavior genetics: IV. Chromosome analyses for geotaxis.J. Comp. Physiol. Psychol. 55:732–739.

    Google Scholar 

  • Hirsch, J., and Ksander, G. (1969). Studies in experimental behavior genetics: V. Negative geotaxis and further chromosome analyses inDrosophila melanogaster.J. Comp. Physiol. Psychol. 67:118–122.

    Google Scholar 

  • Kearsey, M. J., and Kojima, K. (1967). The genetic architecture of body weight and egg hatchibility inDrosophila melanogaster.Genetics 56:23–35.

    Google Scholar 

  • Kerbush, S., van der Staay, F. J., and Hendriks, N. (1981). A searching procedure for transformations and models in a classical mendelian cross breeding Study.Behav. Genet. 11:239–254.

    Google Scholar 

  • Kidwell, J. F. (1969). A chromosomal analysis of egg production and abnormal chaeta number inDrosophila melanogaster.Can. J. Cytol. 11:547–557.

    Google Scholar 

  • Ksander, G. (1966). A chromosome assay for negative geotaxis in the fruit flyDrosophila melanogaster. Master's thesis, University of Illinois at Urbana-Champaign.

  • MacBean, I. T., McKenzie, J. A., and Parsons, P. A. (1971). A pair of closely linked genes controlling high scutellar chaeta number inDrosophila.Theor. Appl. Genet. 41:227–235.

    Google Scholar 

  • Mather, K., and Harrison, B. J. (1949) The manifold effect of selection.Heredity 3:1–52, and 131–162.

    Google Scholar 

  • Mather, K., and Jinks, J. L. (1982).Biometrical Genetics, Chapman and Hall, New York.

    Google Scholar 

  • McGuire, T. R. (1984). Learning in three species of diptera: The blow flyPhormia regina, the fruit flyDrosophila melanogaster, and the house flyMusca domestica.Behav. Genet. 14:479–526.

    Google Scholar 

  • McGuire, T. R., and Tully, T. (1987). Characterization of genes involved with classical conditioning the produce differences between biodirectionally selected strains of the blow flyPhormia regina.Behav. Genet. 17:97–107.

    Google Scholar 

  • McGuire, T. R., McGuire, R. K., and Tully, T. (1989). General program in PASCAL for biometrical genetic analysis.J. Hered. 80:166.

    Google Scholar 

  • Pyle, D. (1978). A chromosome substitution analysis of geotactic maze behavior inDrosophila melanogaster.Behav. Genet. 8:53–64.

    Google Scholar 

  • Ricker, J. P., and Hirsch, J. (1988). Genetic changes occurring over 500 generations in lines ofDrosophila melanogaster selected divergently for geotaxis.Behav. Genet. 18:13–25.

    Google Scholar 

  • Rosbash, M. and Hall, J. C. (1989). The molecular biology of circadian rhythms.Neuron 3:387–398.

    Google Scholar 

  • Sokolowski, M. B. (1980). Foraging Strategies ofDrosophila melanogaster: A chromosomal analysis.Behav. Genet. 10:291–302.

    Google Scholar 

  • Tompkins, L. (1984). Genetic analysis of sex appeal onDrosophila.Behav. Genet. 14:411–440.

    Google Scholar 

  • Tully, T. (1984).Drosophila learning: Behavior and biochemistry.Behav. Genet. 14:527–557.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGuire, T.R. A biometrical genetic approach to chromosome analysis inDrosophila: Detection of epistatic interactions in geotaxis. Behav Genet 22, 453–467 (1992). https://doi.org/10.1007/BF01066615

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01066615

Key Words

Navigation