Skip to main content
Log in

Pharmacokinetic modeling of heparin and its clinical implications

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Experimental work on heparin has indicated that its half-life increases with dose. Two models to describe heparin's pharmacokinetic behavior are proposed, and the parameters in the models are fitted to experimental data. Both models exhibit an apparent firstorder decay with a “halflife” that increases with dose. It is shown that, even though both models exhibit a bolus half-life of from 1 to 2 hr, over 2 days can be required for true steadystate conditions to be achieved in these models when a constant intravenous infusion of drug is given. The clinical implications of these models are discussed. Suggestions are made for further research on heparin kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. McAvoy, The biologic halflife of heparin.Clin. Pharmacol. Ther. 25:372–379 (1979).

    CAS  PubMed  Google Scholar 

  2. J. W. Estes, E. W. Pelikan, and E. Kruger-Thiemer. A retrospective study of the pharmacokinetics of heparin.Clin. Pharmacol. Ther. 10:329–337 (1969).

    CAS  PubMed  Google Scholar 

  3. J. W. Estes. The kinetics of heparin.N. Y. Acad. Sci 179:187–204 (1971).

    Article  CAS  Google Scholar 

  4. J. W. Estes. The heterogeneity of the anticoagulant response to heparin.J. Clin. Pathol. 25:45–48 (1972).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. J. W. Estes and P. F. Poulin. Pharmacokinetics of heparin: Distribution and elimination.Thromb. Diath. Haemorrh. 33:26–37 (1974).

    Google Scholar 

  6. P. Olsson, H. Lagergren, and S. Ek. The elimination from plasma of intravenous heparin.Acta. Med. Scand. 173:619–630 (1963).

    Article  CAS  PubMed  Google Scholar 

  7. E. Jahnchen and G. Levy. Inhibition of phenylbutazone elimination by its metabolite oxyphenbutazone.Proc. Soc. Exp. Biol. 141:963–965 (1965).

    Article  Google Scholar 

  8. J. J. Ashley and G. Levy. Inhibition of diphenylhydantoin elimination by its major metabolite.Res. Commun. Chem. Pathol. Pharmacol. 4:297–306 (1972).

    CAS  PubMed  Google Scholar 

  9. G. Levy and J. J. Ashley. Effect of an inhibitor of glucuronide formation on the elimination kinetics of diphenylhydantoin in rats.J. Pharm. Sci. 62:161–162 (1973).

    Article  CAS  PubMed  Google Scholar 

  10. R. A. O'Reilly, P. M. Aggeler, and L. S. Leong. Studies on the coumarin anticoagulant drugs: A comparison of the pharmacodynamics of dicumarol and warfarin in man.Thromb. Diath. Haemorrh. 11:1–22 (1964).

    PubMed  Google Scholar 

  11. P. G. Dayton, S. A. Cucinell, M. Weiss, and J. M. Perel. Dosedependence of drug plasma level decline in dogs.J. Pharmacol. Exp. Ther. 158:305–316 (1967).

    CAS  PubMed  Google Scholar 

  12. D. Perrier, J. J. Ashley, and G. Levy. Effect of product inhibition on kinetics of drug elimination.J. Pharmacokin. Biopharm. 1:231–242 (1973).

    Article  CAS  Google Scholar 

  13. L. B. Jaques and H. J. Bell. Determination of heparin.Methods Biochem. Anal. 7:253–309 (1959).

    Article  CAS  Google Scholar 

  14. F. C. Monkhouse. Physiological factors concerned with the removal of injected heparin from the circulating blood.Am. J. Physiol. 178:223–228 (1954).

    CAS  PubMed  Google Scholar 

  15. B. Benacerraf and P. Miescher. Bacterial phagocytosis by the reticuloendothelial systemin vivo under different immune conditions.N. Y. Acad. Sci. 88:184–195 (1960).

    Article  Google Scholar 

  16. I. H. Segel.Enzyme Kinetics, Wiley, New York, 1975, Chap. 8.

    Google Scholar 

  17. J. W. Estes. The fate of heparin in the body.Curr. Ther. Res. 18:45–57 (1975).

    CAS  PubMed  Google Scholar 

  18. D. Z. D'Argenio and A. Schumitzky. A program package for simulation and parameter estimation in pharmacokinetic systems.Computer Prog. Med. 9:115–134 (1979).

    Google Scholar 

  19. C. V. Moore. Diseases of the white blood cells and reticuloendothelial system. InCecil-Loeb Textbook of Medicine, 13th ed., Saunders, Philadelphia, 1971.

    Google Scholar 

  20. A. J. Vander, J. H. Sherman, and D. S. Luciano.Human Physiology. McGraw-Hill, New York, 1975, p. 228.

    Google Scholar 

  21. R. J. Ignoffo. Correspondence on heparin half-life in normal and impaired renal function.Clin. Pharmacol. Ther. 17:249–250 (1975).

    CAS  PubMed  Google Scholar 

  22. D. P. Thomas. Treatment of pumonary embolic disease.New Engl. J. Med. 273:885–892 (1965).

    Article  CAS  PubMed  Google Scholar 

  23. V. Gurewich. Some guidelines for heparin therapy of venous thromboembolic disease.J. Am. Med. Assoc. 199:116–118 (1967).

    Article  CAS  Google Scholar 

  24. E. Sullivan. Heparin in treatment of venous thromboembolic disease: Administration, control, and results.Med. J. Aust. 2:153 (1968).

    Google Scholar 

  25. P. J. Perry, G. R. Herron, and J. C. King. Heparin halflife in normal and impaired renal function.Clin. Pharmacol. Ther. 16:514–519 (1974).

    CAS  PubMed  Google Scholar 

  26. P. J. Perry. Reply.Clin. Pharmacol. Ther. 17:250–251 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by the National Institutes of Health under Grant RR 0704811. The work was also supported in part by U.S. Government Grants MB 00146 and GM 23826, which were made to the Laboratory of Applied Pharmacokinetics at the University of Southern California, School of Medicine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McAvoy, T.J. Pharmacokinetic modeling of heparin and its clinical implications. Journal of Pharmacokinetics and Biopharmaceutics 7, 331–354 (1979). https://doi.org/10.1007/BF01062533

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062533

Key words

Navigation