Skip to main content
Log in

A linear recirculation model for drug disposition

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

A new approach to the modeling of drug disposition is described. Disposition is regarded as the result of repetitive passes of the drug around the circulation. Mathematical analysis of experimental blood concentration data yields an expression describing the kinetics of a single pass through the tissues. In physicochemical terms the single-pass behavior depends to a large extent on the interaction of the drug with individual tissues, which greatly simplifies interpretation. The method may reveal features of disposition not apparent from experimental blood concentration data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. L. Zierler. Circulation times and the theory of indicator-dilution methods for determining blood flow and volume. InHandbook of Physiology, Section 2:Circulation, Vol. I, American Physiological Society, Washington, D.C., 1962, pp. 585–615.

    Google Scholar 

  2. C. Waterhouse and J. Keilson. Transfer times across the human body.Bull. Math. Biophys. 34:33–44 (1972).

    Article  CAS  PubMed  Google Scholar 

  3. D. J. Cutler. Linear systems analysis in pharmacokinetics.J. Pharmacokin. Biopharm. 6:265–282 (1978).

    Article  CAS  Google Scholar 

  4. L. I. Harrison and M. Gibaldi. Physiologically based pharmacokinetic model for digoxin disposition in dogs and its preliminary application to humans.J. Pharm. Sci. 66:1679–1683 (1977).

    Article  CAS  PubMed  Google Scholar 

  5. R. V. Churchill.Operational Mathematics, 2nd ed., International Student Edition, McGraw-Hill, Kogakusha, 1958, p. 58.

    Google Scholar 

  6. J. G. Wagner.Biopharmaceutics and Relevant Pharmacokinetics, 1st ed., Drag Intelligence Publications, Hamilton, Ill., p. 261.

  7. J. Kampmann and L. Skovsted. The pharmacokinetics of propylthiouracil.Acta Pharmacol. Toxicol. 35:361–369 (1974).

    Article  CAS  Google Scholar 

  8. D. D. Breimer, C. Honhoff, W. Zilly, E. Richter, and J. M. van Rossum. Pharmacokinetics of hexobarbital in man after intravenous infusion.J. Pharmacokin. Biopharm. 3:1–11 (1975).

    Article  CAS  Google Scholar 

  9. J. R. Koup, D. J. Greenblatt, W. J. Jusko, T. W. Smith, and J. Koch-Weser. Pharmacokinetics of digoxin in normal subjects after intravenous bolus and infusion doses.J. Pharmacokin. Biopharm. 3:181–192 (1975).

    Article  CAS  Google Scholar 

  10. J. M. van Rossum. Significance of pharmacokinetics for drug design and the planning of dosage regimens. In E. J. Ariens (ed.),Drug Design, Vol. I, Academic Press, New York, 1971, pp. 469–521.

    Google Scholar 

  11. S. Riegelman, J. C. K. Loo, and M. Rowland. Shortcomings in pharmacokinetic analysis by conceiving the body to exhibit properties of a single compartment.J. Pharm. Sci. 57:117–123 (1968).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cutler, D.J. A linear recirculation model for drug disposition. Journal of Pharmacokinetics and Biopharmaceutics 7, 101–116 (1979). https://doi.org/10.1007/BF01059445

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059445

Key words

Navigation