Skip to main content
Log in

Finite-dimensional description of convective Reaction-Diffusion equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We are concerned with the asymptotic dynamics of a certain type of semilinear parabolic equation, namely,u t=u xx+(f(u))x+g(u)+h(x) on the interval [0,L]. Under the general condition we prove that this equation admits a dissipative dynamical system and it possesses the global attractor. But for largeL > 0, we do not know whether or not an inertial manifold exists. Here we introduce a nonlinear change of variables so that we transform the above equation to a reaction diffusion system which possesses exactly the same asymptotic dynamics. We then prove the existence of an inertial manifold for the transformed equation; thereby we find the ordinary differential equation which describes completely the long-time dynamics of the orginal equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chow, S.-N., and Lu, K. (1988). Invariant manifolds for flows in Banach spaces.J. Diff. Eq. 74, 285–317.

    Google Scholar 

  • Constantin, P., Foias, C., Nicolaenko, B., and Temam, R. (1989).Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Appl. Math. Sci., Springer Verlag, New York.

    Google Scholar 

  • Dunford, N., and Schwartz, J. T. (1957).Linear Operator 1, Interscience, New York.

    Google Scholar 

  • Foias, C., Sell, G. R., and Temam, R. (1988). Inertial manifolds for nonlinear evolutionary equations.J. Diff. Eq. 73, 309–353.

    Google Scholar 

  • Foias, C., Sell, G. R., and Titi, E. S. (1989). Exponential tracking and approximation of inertial manifolds for dissipative equations.J. Dynam. Diff. Eq. 1, 199–224.

    Google Scholar 

  • Friedman, A. (1964).Partial Differential Equations of Parabolic Type, Prentice-Hail, Eaglewood Cliffs, NJ.

    Google Scholar 

  • Hale, J. K. (1988).Asymptotic Behavior of Dissipative Systems, Math. Surv. Monogr., Am. Math. Soc., Providence, RI.

  • Henry, D. (1981).Geometric Theory of Semilinear Parabolic Equations, Lect. Notes Math. 840, Springer Verlag, New York.

    Google Scholar 

  • Kwak, M. (1991).Finite Dimensional Inertial Forms for the 2D Navier-Stokes Equations, Ph.D. thesis, University of Minnesota, Minneapolis, AHPCRC preprint 91-30, IMA preprint 828

    Google Scholar 

  • Lions, J. L. (1969).Quelques Méthodes de Résolution des Problèmes aux Limites non linéaires, Gauthier Villars, Paris.

    Google Scholar 

  • Luskin, M., and Sell, G. R. (1989). Parabolic regularization and inertial manifolds, IMA preprint.

  • Mallet-Paret, J., and Sell, G. R. (1988). Inertial manifolds for reaction diffusion equations in higher space dimensions, IMA preprint No. 331;J. Am. Math. Soc. 1 (1989).

  • Miklavcic, M. (1990). A sharp condition for existence of an inertial manifold, IMA preprint 604.

  • Sell, G. R., and You, Y. (1990). Inertial manifolds: The non-self adjoint case, Preprint.

  • Temam, R. (1979). Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS Regional Conference, No. 41, SIAM, Philadelphia.

    Google Scholar 

  • Temam, R. (1988).Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwak, M. Finite-dimensional description of convective Reaction-Diffusion equations. J Dyn Diff Equat 4, 515–543 (1992). https://doi.org/10.1007/BF01053808

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053808

Key words

Navigation