Skip to main content
Log in

The structural state of iron in oxidized vs. reduced glasses at 1 atm: A57Fe Mössbauer study

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

A general model for the structural state of iron in a variety of silicate and aluminosilicate glass compositions in the systems Na2O-Al2O3-SiO2-Fe-O, CaO-Al2O3-SiO2-Fe-O, and MgO-Al2O3-SiO2-Fe-O is proposed. Quenched melts with variable Al/Si and NBO/T (average number of nonbridging oxygens per tetrahedrally coordinated cation), synthesized over a range of temperatures and values of oxygen fugacity, are analyzed with57Fe Mössbauer spectroscopy.

For oxidized glasses with Fe3+/∑Fe>0.50, the isomer shift for Fe3+ is in the range ∼0.22–0.33 mm/s and ∼0.36 mm/s at 298 K and 77 K, respectively. These values are indicative of tetrahedrally coordinated Fe3−. This assignment is in agreement with the interpretation of Raman, luminescence, and X-ray,K-edge absorption spectra. The values of the quadrupole splitting are ∼0.90 mm/s (298 K and 77 K) in the Na-aluminosilicate glasses and compare with the values of 1.3 mm/s and 1.5 mm/s for the analogous Ca- and Mg-aluminosilicate compositions. The variations in quadrupole splittings for Fe3+ are due to differences in the degree of distortion of the tetrahedrally coordinated site in each of the systems.

The values of the isomer shifts for Fe2+ ions in glasses irrespective of Fe3+/∑Fe are in the range 0.90–1.06 mm/s at 298 K and 1.0–1.15 mm/s at 77 K. The corresponding range of values of the quadrupole splitting is 1.75–2.10 mm/s at 298 K and 2.00–2.35 mm/s at 77 K. The temperature dependence of the hyperfine parameters for Fe2+ is indicative of noninteracting ions, but the values of the isomer shift are intermediate between those values normally attributable to tetrahedrally and octahedrally coordinated Fe2+. The assignment of the isomer-shift values of Fe2+ to octahedral coordination is in agreement with the results of other spectral studies.

For reduced glasses (Fe3+/∑Fe≈<0.50), the value of the isomer shift for Fe3+ at both 298 K and 77 K increases and is linearly correlated with decreasing Fe3+/∑Fe in the range of\(f_{O_2 } \) between 10−3 and 10−6 atm when a single quadrupole-split doublet is assumed to represent the absorption due to ferric iron. The increase in value of the isomer shift with decreasing\(f_{O_2 } \) is consistent with an increase in the proportion of Fe3+ ions that are octahedrally coordinated. The concentration of octahedral Fe3+ is dependent on the\(T - f_{O_2 } \) conditions, and in the range of log\(f_{O_2 } \) between 10−2.0 and 10−5 a significant proportion of the iron may occur as iron-rich structural units with stoichiometry similar to that of inverse spinels such as Fe3O4, in addition to isolated Fe2+ and Fe3+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amthauer G, Annersten H, Hafner SS (1977) The Mössbauer spectrum of57Fe in titanium-bearing andradites. Phys Chem Minerals 1:399–413

    Google Scholar 

  • Amthauer G, Langer K, Schliestedt M (1980) Thermally activated electron delocalization in deerite. Phys Chem Minerals 6:19–30

    Google Scholar 

  • Annersten H, Hafner SS (1973) Vacancy distribution in synthetic spinels of the series Fe3O4-γFe2O3. Z Kristallogr 137:321–340

    Google Scholar 

  • Annersten H, Olesch M (1978) Distribution of ferrous and ferric iron in clintonite and the Mössbauer characteristics of ferric iron in tetrahedral coordination. Can Mineral 16:199–204

    Google Scholar 

  • Annersten H, Olesch M, Seifert FA (1978) Ferric iron in orthopyroxene: a Mössbauer spectroscopy study. Lithos 11:301–310

    Google Scholar 

  • Auric P, Dang NV, Bandyopadhyay AK, Zarzycki J (1982) Super-paramagnetism and ferrimagnetism of the small particles of magnetite in a silicate matrix. J Non-Cryst Solids 50:97–106

    Google Scholar 

  • Bandyopadhyay AK, Zarzycki J, Auric P, Chappert J (1980) Magnetic properties of a basalt glass and glass ceramics. J Non-Cryst Solids 40:353–368

    Google Scholar 

  • Calas G, Petiau J (1983a) Coordination of iron in oxide glasses through high-resolution K-edge spectra: information from the pre-edge. Solid State Commun 48:625–629

    Google Scholar 

  • Calas G, Petiau J (1983b) Structure of oxide glasses: spectroscopic studies of local order and crystallochemistry. Geochemical implications. Bull Mineral 106:33–55

    Google Scholar 

  • Coey JMD, Moukarika A, McDonagh CM (1982) Electron hopping in cronstedtite. Solid State Commun 41:797–800

    Google Scholar 

  • Cukierman M, Uhlmann DR (1974) Effect of iron oxidation state on viscosity, lunar composition 1555. J Geophys Res 79:1594–1598

    Google Scholar 

  • Danckwerth PA (1982) The nature of basic cation coordination in silicate glass: evidence from Mössbauer spectroscopy. Carnegie Inst Washington Yearb 81:340–342

    Google Scholar 

  • Danckwerth PA, Virgo D (1982) Structural state of Fe in the system Na2O-SiO2-Fe-O. Carnegie Inst Washington Yearb 81:342–344

    Google Scholar 

  • Davidson WC (1959) Variable metric method for minimization. Argonne National Laboratory, ANL 5990

  • Dyar MD, Birnie DP III (1984) Quench media effects on iron partitioning and ordering in a lunar glass. J Non-Cryst Solids 67:397–412

    Google Scholar 

  • Eibschütz M, Lines ME, Nassau K (1980) Electric-field-gradient distribution in vitreous yttrium iron garnet. Phys Rev B 21:3767–3770

    Google Scholar 

  • Eugster HP, Wones DR (1962) Stability relations of the ferruginous biotite, annite. J Petrol 3:82–125

    Google Scholar 

  • Evans BJ, Amthauer G (1980) The electronic structure of ilvaite and the pressure and temperature dependence of its57Fe Mössbauer spectrum. J Phys Chem Solids 41:985–1007

    Google Scholar 

  • Fox KE, Furukawa T, White WB (1981) Luminescence of Fe3+ in metaphosphate glasses: evidence for four- and six-coordinated sites. J Am Ceram Soc 64:C42-C43

    Google Scholar 

  • Fox KE, Furukawa T, White WB (1982) Transition metal ions in silicate melts, Part 2, Iron in sodium silicate glasses. Phys Chem Glasses 23:169–178

    Google Scholar 

  • Frank CW, Drickamer HG (1976) High pressure chemistry and physics of iron compounds. In Strens RGJ (ed) “The Physics and Chemistry of Minerals and Rocks,” NATO Advanced Study Institute, Newcastle upon Tyne 1974, Wiley, London, pp 509–544

    Google Scholar 

  • Goldman DS (1983) Oxidation equilibrium of iron in borosilicate glass. J Am Ceram Soc 66:205–209

    Google Scholar 

  • Goldman DS, Berg JI (1980) Spectral study of ferrous iron in Ca-Al borosilicate glass at room and melt temperatures. J Non-Cryst Solids 38–39:183–188

    Google Scholar 

  • Grandjean F, Gerard A (1978) Observation by Mössbauer spectroscopy of electron hoppings in the spinel series Zn1−xGexFe2O4. Solid State Commun 25:679–683

    Google Scholar 

  • Hafner SS, Huckenholz HG (1971) Mössbauer spectrum of synthetic ferri-diopside. Nature Phys Sci 233:9–11

    Google Scholar 

  • Haggerty SE, Tompkins LA (1983) Redox state of the earth's upper mantle from kimberlitic ilmenites. Nature 303:295–300

    Google Scholar 

  • Haggström L, Annersten H, Ericsson T, Wäppling R, Karner W, Bjarman S (1978) Magnetic dipolar and electric quadrupolar effects on the Mössbauer spectra of magnetite above the Verwey transition. Hyperfine Interact 5:201–214

    Google Scholar 

  • Harami T, Loock J, Huenges E, Fontcuberta J, Obradors X, Tejada J, Parak F (1984) The influence of the semiconductor properties on the Mössbauer emission spectra of57Co cobalt oxide. J Phys Chem Solids 45:181–190

    Google Scholar 

  • Hess PC (1980) Polymerization model for silicate melts. In Hargraves RB (ed), “Physics of Magmatic Processes,” Princeton Univ Press, Princeton NJ, pp 3–49

    Google Scholar 

  • Hill R, Roeder P (1974) The crystallization of spinel from basaltic liquid as a function of oxygen fugacity. J Geol 82:709–729

    Google Scholar 

  • Huggins FE, Mao HK, Virgo D (1975) Mössbauer studies at high pressure. Carnegie Inst Washington Yearb 74:405–410

    Google Scholar 

  • Huggins FE, Virgo D, Huckenholz HG (1977) Titanium-containing silicate garnets. II. The crystal chemistry of melanites and schorlomites. Am Mineral 62:646–665

    Google Scholar 

  • Johnston WD (1964) Oxidation-reduction equilibria in iron-containing glasses. J Am Ceram Soc 47:198–207

    Google Scholar 

  • Kurkijian CR, Sigety EA (1968) Coordination of Fe3+ in glass. Phys Chem Glasses 9:73–83

    Google Scholar 

  • Levy RA, Lupis CHP, Flinn PA (1976) Mössbauer analysis of the valence and coordination of iron cations in SiO2-Na2O-CaO glasses. Phys Chem Glasses 17:94–103

    Google Scholar 

  • Lotgering FK, van Diepen AM (1977) Electron exchange between Fe2+ and Fe3+ ions on octahedral sites in spinels studied by means of paramagnetic Mössbauer spectra and susceptibility measurements. J Phys Chem Solids 38:565–572

    Google Scholar 

  • Mao HK, Virgo D, Bell PM (1973) Analytical study of the orange lunar soil returned by the Apollo 17 astronauts. Carnegie Inst Washington Yearb 72:631–638

    Google Scholar 

  • Mo X, Carmichael ISE, Rivers M, Stebbins J (1982) The partial molar volume of Fe2O3 in multicomponent silicate liquids and the pressure dependence of oxygen fugacity in magmas. Mineral Mag 45:237–245

    Google Scholar 

  • Mysen BO, Seifert FA, Virgo D (1980) Structure and redox equilibria of iron-bearing silicate melts. Am Mineral 65:867–884

    Google Scholar 

  • Mysen BO, Virgo D, Neumann E, Seifert F (1984a) Redox equilibria and the structural states of ferric and ferrous iron in melts in the system CaO-MgO-Al2O3-SiO2-Fe-O: relationships between redox equilibria, melt structure and liquidus phase equilibria. Submitted to Am Mineral

  • Mysen BO, Virgo D, Seifert FA (1984b) Redox equilibria of iron in alkaline earth silicate melts: relationships between melt structure, oxygen fugacity, temperature and properties of iron-bearing silicate liquids. Am Mineral 69:834–847

    Google Scholar 

  • Nolet DA (1980) Optical absorption and Mössbauer spectra of Fe, Ti silicate glasses. J Non-Cryst Solids 37:99–110

    Google Scholar 

  • Nolet DA, Burns RG (1979) Ilvaite: a study of temperature dependent electron delocalization by the Mössbauer effect. Phys Chem Minerals 4:221–234

    Google Scholar 

  • Nolet DA, Burns RG, Flamm SL, Besancon JR (1979) Spectra of Fe-Ti silicate glasses: implications to remote-sensing of planetary surfaces. Proc 10th Lunar Planet Sci Conf 1775–1786

  • O'Horo MP, Levy RA (1978) Effect of melt atmosphere on the magnetic properties of a [(SiO2)45(CaO)55]65[Fe2O3]35 glass. J Appl Phys 49:1635–1637

    Google Scholar 

  • Osborn EF (1959) Role of oxygen pressure in the crystallization and differentiation of basaltic magma. Am J Sci 257:609–647

    Google Scholar 

  • Pan L, Evans BJ (1978) The influence of magnetic order on charge delocalization in pure and Zn-doped Fe3O4. J Appl Phys 49:1458–1460

    Google Scholar 

  • Pargamin L, Lupis CHP, Flinn PA (1972) Mössbauer analysis of the distribution of iron cations in silicate slags. Metall Trans 3:2093–2105

    Google Scholar 

  • Robbins M, Wertheim GK, Sherwood RC, Buchanan DNE (1971) Magnetic properties and site distribution in the system FeCr2O4-Fe3O4 (Fe2+Cr2xFe3+ xO4). J Phys Chem Solids 32:717–729

    Google Scholar 

  • Rontgen H, Wintergaher P, Kammel R (1960) Struktur und Eigenschaften von Schlacken der Metallhüttenprozesse. II. Viskositätsmessungen and Schmelzen der Systeme Eisenoxydul-Kalk-Kieselsäure und Eisenoxydul-Kalk-Tonerde-Kieselsäure. Z Erzbergbau Metallhüttenwes 8:363–373

    Google Scholar 

  • Sack RO, Carmichael ISE, Rivers M, Gheorso MS (1980) Ferric-ferrous equilibria in natural silicate liquids at 1 bar. Contrib Mineral Petrol 75:369–376

    Google Scholar 

  • Sato M (1972) Electrochemical measurements and control of oxygen fugacities with solid electrolyte systems. In Ulmer GC (ed) “Research Techniques for High Pressure and High Temperature,” Springer-Verlag, New York, pp 43–99

    Google Scholar 

  • Schreiber HD, Lauer HV, Thanyasiri T (1980) Oxidation-reduction equilibria of iron and cerium in silicate glasses: individual redox potentials and mutual interactions. J Non-Cryst Solids 38–39:785–790

    Google Scholar 

  • Seifert FA, Mysen BO, Virgo D (1982) Three-dimensional network melt structure in the systems SiO2-NaAlO2, SiO2-CaAl2O4 and SiO2-MgAl2O4. Am Mineral 67:696–718

    Google Scholar 

  • Song C, Muller JG (1976) Mössbauer evidence for relaxation valence averaging in CoO and NiO. Phys Rev B 14:2761–2768

    Google Scholar 

  • Thornber CR, Roeder PL, Foster JR (1980) The effect of composition on the ferric-ferrous ratio in basaltic liquids at atmospheric pressure. Geochim Cosmochim Acta 44:525–532

    Google Scholar 

  • Toguri JM, Kaiura GH, Marchant G (1976) The viscosity of the molten FeO-Fe2O3-SiO2 system. In “Extraction Metallurgy of Copper. Vol. 1. Physical Chemistry of Copper Melting”, Metall Soc of AIME, New York, pp 259–273

    Google Scholar 

  • Verhelst RA, Kline RW, de Graaf AM, Hooper HO (1975) Magnetic properties of cobalt and manganese aluminosilicate glasses. Phys Rev B 11:4427–4435

    Google Scholar 

  • Virgo D, Hafner SS (1969) Fe2+, Mg order-disorder in heated orthopyroxenes. Mineral Soc Am Spec Pap 2:67–87

    Google Scholar 

  • Virgo D, Mysen BO, Danckwerth P, Seifert F (1982) Speciation of Fe3+ in 1-atm Na2O-SiO2-Fe-O melts. Carnegie Inst Washington Yearb 81:349–353

    Google Scholar 

  • Virgo D, Mysen BO, Danckwerth P (1983) Redox equilibria and the anionic structure of Na2xSiO2-Fe-O melts: effect of oxygen fugacity. Carnegie Inst Washington Yearb 82:305–309

    Google Scholar 

  • Waychunas GA, Rossman GR (1983) Spectroscopic standard for tetrahedrally coordinated ferric iron:LiAlO2:Fe3+. Phys Chem Minerals 9:212–215

    Google Scholar 

  • Waychunas GA, Apted MJ, Brown GE (1983) X-ray K-edge absorption spectra of Fe minerals and model compounds: nearedge structure. Phys Chem Minerals 10:1–9

    Google Scholar 

  • Weber HP, Hafner SS (1971) Vacancy distribution in nonstoichiometric magnetites. Z Kristallogr 133:327–340

    Google Scholar 

  • Wivel C, Morup S (1981) Improved computational procedure for evaluation of overlapping hyperfine parameter distributions in Mössbauer spectra. J Phys E Sci Instrum 14:605–610

    Google Scholar 

  • Zachariasen W (1932) The atomic arrangement in glass. J Chem Soc (London) 54:3841–3851

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virgo, D., Mysen, B.O. The structural state of iron in oxidized vs. reduced glasses at 1 atm: A57Fe Mössbauer study. Phys Chem Minerals 12, 65–76 (1985). https://doi.org/10.1007/BF01046829

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046829

Keywords

Navigation