Skip to main content
Log in

A comparison of SSM/I and TOVS column water vapor data over the global oceans

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

This paper presents a comparison of column water vapor (CWV) information derived from both infrared measurements as part of the TIROS-N Operational Vertical Sounder (TOVS) and Special Sensor Microwave/Imager (SSM/I) in an attempt to assess the relative merits of each kind of data. From the analyses presented in this paper, it appears that both types of satellite data closely reproduce the bulk climatological relationships introduced in earlier studies using different data. This includes both the bulk relationship between CWV and the sea surface temperature and the annual variation of CWV over the world's oceans. The TOVS water vapor data tends to be systematically smaller than the SSM/I data and when averaged over the ocean covered regions of the globe this difference is between 2–3 kgm−2. Using a cloud liquid water threshold technique to establish clear sky values of SSM/I water vapor, we conclude that the differences between TOVS and SSM/I are largely a result of the clear sky bias in TOVS sampling except in the subsidence regions of the subtropics. The clear sky bias is considerably smaller than previously reported and we attribute this improvement to the new physical retrieval scheme implemented by NOAA NESDIS. While there is considerable agreement between the two types of satellite data, there are also important differences. In regions where there is drying associated with large scale subsidence of the atmosphere, the TOVS CWV's are too moist relative to both radiosonde and SSM/I data and this difference may exceed 10 kgm−2. The explanation for this difference lies in the limitations of infrared radiative transfer. By contrast, in regions of deep convection, such as in the ITCZ, TOVS CWV is systematically lower than the SSM/I CWV. Both TOVS and SSM/I data demonstrate similar kinds of gross effects of large scale circulation on the water vapor except in these subsidence regions where TOVS data leads to an under-prediction of the effects of subsidence drying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, R. F., Mack, R. A., Prasad, N., Yeh, H.-Y. M., Hakkarinen, I. M., 1990. Aircraft microwave observations and simulations of deep convection from 18 to 183 GHz, Part I: Observations.J. Atmos. Oceanic Technol.,7, 377–391.

    Google Scholar 

  • Bates, J. J., 1991. High frequency variability of special sensor microwave/imager derived wind speed and moisture during an intraseasonal oscillation.J. Geophys. Res.,96, 3411–3423.

    Google Scholar 

  • Fleming, H. E., Goldberg, M. D., Crosby, D. S., 1986: Minimum variance simultaneous retrieval of temperature and water vapor from satellite radiance measurements, 2nd Conference on Satellite Meteorology/Remote Sensing and Application, Williamsburg, VA, 20–23.

  • Goodberlet, M. A., Swift, C. T., 1989. Remote sensing of ocean surface winds with Special Sensor Microwave/Images.J. Geophys. Res.,94, 14,547–14,555.

    Google Scholar 

  • Greenwald, T. J., Stephens, G. L., Vonder Haar, T. H., Jackson, D. L., 1993. A physical retrieval of cloud liquid water over the global oceans using SSM/I observations.J. Geophys. Res.,98, 18471–18488.

    Google Scholar 

  • Hayden, C. M., 1988. GOES-VAS simultaneous temperaturemoisture retrieval algorithm.J. Appl. Meteor.,27, 705–733.

    Google Scholar 

  • Hollinger, J., Lo, R., Poe, C., Savage, R., Pierce, J., 1987: Special Sensor microwave/imager user's guide, report, Nav. Res. Lab., Washington D.C.

    Google Scholar 

  • Lindzen, R. S., 1990: Some coolness concerning global warming.Bull. Amer. Meteor. Soc.,71, 288–299.

    Google Scholar 

  • Liu, G., Curry, J. A., 1992: Retrieval of precipitation from satellite microwave measurement using both emission and scattering.J. Geophys. Res.,97, 9959–9974.

    Google Scholar 

  • Liu, W. T., Tang, W., Wentz, F. J., 1992: Precipitable water and surface humidity over global oceans from Special Sensor Microwave Imager and European Center for Medium Range Weather Forecasts.J. Geophys. Res.,97, 2251–2264.

    Google Scholar 

  • Monine, P., Chedin, A., Scott, N., 1987: Automatic classification of air mass type from satellite vertical sounding data: Application to NOAA-7.Ocean-Air Interactions,1, 95–108.

    Google Scholar 

  • Neale, C. M. U., McFarland, M. J., Chang, K., 1990: Land-surface-type classification using brightness temperature from the special sensor microwave/imager.IEEE. Trans. Geosci. Remote Sensing,28, 829–839.

    Google Scholar 

  • Paltridge, G. W., 1980: Cloud-radiation feedback to climate.Quart. J. Roy. Meteor. Soc.,106, 895–899.

    Google Scholar 

  • Pandey, P. C., Kakar, R. K., 1982: An empirical microwave emissivity model for a foam covered sea.IEEE J. Oceanic Eng.,OE-7(3), 135–140.

    Google Scholar 

  • Petty, G. W., 1990: On the response of the Special Sensor Microwave/Imager to the marine environment—Implications for atmospheric parameter retrievals, Ph.D. dissertation, University of Washington, 291 pp.

  • Petty, G. W., Katsaros, K. B., 1992: Nimbus 7 SMMR precipitation observations calibrated against surface radar during TAMEX.J. Appl. Meteor.,31, 489–505.

    Google Scholar 

  • Prabhakara, C., Daluu, G., Lo, R. C., Nath, N. R., 1979: Remote sensing of seasonal distribution of precipitable water vapor over the oceans and its inference of boundary layer structure.Mon. Wea. Rev.,107, 1388–1401.

    Google Scholar 

  • Prabhakara, C., Chang, H. D., Chang, A. T. C., 1982: Remote sensing of precipitable water over the oceans from NIMBUS 7 microwave measurements.J. Appl. Meteor.,21, 59–68.

    Google Scholar 

  • Ramanathan, V., 1981: The role of ocean-atmospheric interactions in the CO2 climate problem.J. Atmos. Sci.,38, 918–930.

    Google Scholar 

  • Reale, A. L., Goldberg, M. D., Daniels, J. M., 1989: Operational TOVS soundings using a physical approach, 12th Canadian Symposium on Remote Sensing, July 10–14, Vancouver BC, 2653–2657.

  • Reynolds, R. W., 1988: A real-time global sea surface temperature analysis.J. Climate,1, 75–86.

    Google Scholar 

  • Roeckner, E., Schlese, U., Biercamp, J., Loewe, P., 1987: Cloud optical depth feedback and climate modeling.Nature,329, 138–140.

    Google Scholar 

  • Schiffer, R. A., Rossow, W. B., 1983: The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Programme.Bull. Amer. Meteor. Soc.,64, 779–784.

    Google Scholar 

  • Smith, W. L., Woolf, H. M., 1976: The use of eigenvectors of statistical covariance matrices for interpreting satellite soundings radiometer observations.J. Atmos. Sci.,33, 1127–1140.

    Google Scholar 

  • Smith, W. L., Woolf, H. M., 1984: Improved vertical soundings from amalgamation of polar and geostationary radiance observations, Preprint Volume:Conference on Satellite Meteorology/Remote Sensing and Applications, June 25–29, 1984, Clearwater, Florida.

  • Smith, W. L., Woolf, W. M., Hayden, C. M., Wark, D. Q., McMillan, L. M., 1979: The TIROS-N Operational Vertical Sounder.Bull. Amer. Meteor. Soc.,58, 1177–1187.

    Google Scholar 

  • Smith, W. L., Woolf, H. M., Hayden, C. M., Schreiner, A. J., 1985: The simultaneous retrieval export package.Proc. 2nd International TOVS Study Conference, Austria, 18–23 February 1985.

  • Sommerville, R. C., Remer, L. A., 1984: Cloud optical thickness feedbacks in the CO2 climate problem.J. Geophys. Res.,89, 9668–9672.

    Google Scholar 

  • Spencer, R. W., Goodman, H. M., Hood, R. E., 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal.J. Atmos. Oceanic Technol.,6, 254–273.

    Google Scholar 

  • Starr, D. O'C, Melfi, H., 1991: The Role of Water Vepor in Climate—A Strategic Research Plan for the Proposed GEWEX Water Vapor Project (GVaP), NASA Conference Publication 3120.

  • Starr, V. P., Peixoto, J. P., McKean, R. G., 1969: Pole-to-pole moisture conditions for the IGY.Pure Appl. Geophys.,75, 300–331.

    Google Scholar 

  • Stephens, G. L., 1990: On the relationship between water vapor over the oceans and sea surface temperature.J. Climate,3, 634–645.

    Google Scholar 

  • Stephens, G. L., 1994:The Remote Sensing of the Lower Atmosphere: An Introduction. New York: Oxford University Press, 523 pp.

    Google Scholar 

  • Stephens, G. L., Greenwald, T. J., 1991: The Earth's radiation budget and its relation to atmospheric hydrology I. Observations of the clear sky greenhouse effect.J. Geophys. Res.,96, 15,311–15,324.

    Google Scholar 

  • Stephens, G. L., Tjemkes, S. A., 1992: Water vapor and its role in the earth's greenhouse.Aust. J. Phys.,46, 149–166.

    Google Scholar 

  • Stephens, G. L., Tsay, S.-C., Stackhouse, P. W., Jr., Flatau, P. J., 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback.J. Atmos. Sci.,47, 1742–1753.

    Google Scholar 

  • Susskind, J., Rosenfield, J., Reuter, D., Chahine, M. T., 1984: Remote sensing of weather and climate parameters from HIRS/2 MSU on TIROS N.J. Geophys. Res.,89, 4677–4697.

    Google Scholar 

  • Tjemkes, S. A., Stephens, G. L., 1990: Intercomparison between microwave and infrared observations of precipitable water, 5th Conference on Satellite Meteorology and Oceanography, September 3–7, 1990, London, England.

  • Tjemkes, S. A., Stephens, G. L., Jackson, D. L., 1991: Spaceborne observation of columnar water vapor: SSMI observations and algorithm.J. Geophys. Res.,96, 10941–10954.

    Google Scholar 

  • Wilheit, T. T., 1979a: The effect of wind on the microwave emission from the ocean's surface at 37 GHz.J. Geophys. Res.,84(c8), 4921–4926.

    Google Scholar 

  • Wilheit, T. T., 1979b: A model of the microwave emissivity of the ocean's surface as a function of wind speed.IEEE Trans. Geosci. Electron.,GE-17, 244–249.

    Google Scholar 

  • Wu, X., Bates, J. J., Khalsa, S. J. S., 1993: A climatology of the water vapor band brightness temperatures from NOAA operational satellites.J. Climate,6, 1282–1300.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 11 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephens, G.L., Jackson, D.L. & Bates, J.J. A comparison of SSM/I and TOVS column water vapor data over the global oceans. Meteorl. Atmos. Phys. 54, 183–201 (1994). https://doi.org/10.1007/BF01030059

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01030059

Keywords

Navigation