Skip to main content
Log in

Development of alloy electrocatalysts for phosphoric acid fuel cells (PAFC)

  • Review Paper
  • Reviews of Applied Electrochemistry 32
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

One of the great scientific achievements for electrocatalysis in the past ten years has been the ability to reproducibly form microparticles of platinum metals in conductive supports. The dimensions of these crystallites are such that up to 50% of the atom content is at the crystallite surface the are single crystals, and have metallurgical properties that are unlike, bulk metals. These have found application as electrocatalysts in hot phosphoric acid fuel cells (PAFC) for oxygen reduction and hydrogen oxidation. Much of the recent work has been involved with developing various binary and ternary alloy combinations while at the same time, maintaining the crystallite microdimensions. Pt−Co−Cr alloys are one of the most favoured combinations for oxygen reduction and the Pt−Pd alloys are favoured for hydrogen oxidation, especially in the presence of trace, poisons such as carbon monoxide and hydrogen sulphide. Operation of these electrocatalysts is the subject of much investigation, with the present conclusion that the apparent mode of catalytic enhancement with the binary and ternary platinum alloys for oxygen reduction, resides in the leaching of the non-platinum elements from the alloy crystallite surfaces to give a microroughening, and thereby an increased reaction surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Stonehart, Extended Abstracts 31st Meeting ISE, Venice, Italy, 1980, pp 96–105.

  2. V. M. Jalan, US Patent 4 202 934 (13 May 1980).

  3. D. A. Landsman and F. J. Luczak, US Patent 4 316 944 (23 February 1982).

  4. D. A. Landsman and F. J. Luczak, US Patent 4 447 506 (8 May 1984).

  5. D. A. Landsman and F. J. Luczak, US Patent 4 677 092 (30 June 1987).

  6. Chung-Zong Wan, European Patent App. 84 304 984 3 (27 December 1984) US Patent 4 822 699 (18 April 1989).

  7. T. Ito, S. Matsuzawa and K. Kato, US Patent 4 716 087 (29 December 1987).

  8. K. Tsurumi, S. Kawaguchi, T. Nakamura, P. Stonehart and M. Watanabe, Extended Abstracts, Fuel Cell Seminar, US Department, of Energy, Long Beach, California (1988) p. 202.

  9. V. Jalan and E. J. Taylor,J. Electrochem. Soc. 130 (1983) 2299.

    Google Scholar 

  10. L. Borodovsky, J. G. Beery and M. PaffettNuclear Instrumentation and Methods in Physics Research B 24 (1987) 568.

    Google Scholar 

  11. K. Daube, M. Paffett, S. Gottesfeld and C. Campbell,J. Vac. Sci. Tech. A4 (1986) 1617.

    Google Scholar 

  12. S. Gottesfeld, M. T. Paffett and A. Redondo,J. Electroanal. Chem. 205 (1986) 163.

    Google Scholar 

  13. M. T. Paffett, K. A. Daube, S. Gottesfeld and C. T. Campbell,220 (1987) 269.

    Google Scholar 

  14. M. T. Paffett, J. G. Beery and S. Gottesfeld,J. Electrochem. Soc. 135 (1988) 1431.

    Google Scholar 

  15. P. N. Ross, Extended Abstracts Vol. 89-1 Electrochemical Soc. Meeting, Los Angeles (7–12 May 1989) The Electrochemical Soc., Pennington, NJ p. 659.

  16. B. C. Beard and P. N. Ross Jr.,J. Electrochem. Soc. 137. (1990) 3368.

    Google Scholar 

  17. P. Stonehart, National Bureau of Standards, Spec. Pub. 455 (1975) p. 167.

    Google Scholar 

  18. P. Stonehart, US Patent 4 407 906 (4 October 1983).

  19. ,Int. J. Hydrogen Energy 9 (1984) 921.

    Google Scholar 

  20. P. N. Ross, K. Kinoshita, A. J. Scarpellino and P. Stonehart,J. Electroanal. Chem. 63 (1975) 97.

    Google Scholar 

  21. M. T. Paffett, E. Ticianelli, J. Pafford and S. Gottesfeld, Extended Abstracts, Fuel Cell Seminar, US Department of Energy, Long Beach, California (1988) p. 126.

  22. L. J. BregoliElectrochim. Acta 23 (1978) 489.

    Google Scholar 

  23. P. Stonehart, J. Baris, J. Hochmuth and P. Pagliaro, DOE/NASA-10176-10; NASA CR-168223 Final Report (1984).

  24. P. Stonehart, in ‘Power Sources for electric Vehicles’, (edited by B. D. McNichol and D. A. J. Rand), Elsevier, New York (1984), Ch. 8, p. 769.

    Google Scholar 

  25. M. I. Sattler and P. N. Ross,Ultramicroscopy 30 (1986) 21.

    Google Scholar 

  26. P. N. Ross in ’Precious Metals·1986’, (edited by U. V. Rao), International Precious Metals Institute, Allentown, PA (1986) p. 355.

    Google Scholar 

  27. M. Watanabe, H. Sei and P. Stonehart, Extended Abstracts, 1973rd Meeting of The Electrochemical Society, Atlanta Georgia (1988), no. 510, p. 732 andJ. Electroanal. Chem. 261 The Electrochemical Soc., Pennington, NJ (1989) 375.

  28. S. Brunauer, P. H. Emmett and E. Teller,J. Amer. Chem. Soc. 60 (1938) 309

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on an address given before the 40th International Society of Electrochemistry meeting, Kyoto, Japan (1989).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stonehart, P. Development of alloy electrocatalysts for phosphoric acid fuel cells (PAFC). J Appl Electrochem 22, 995–1001 (1992). https://doi.org/10.1007/BF01029576

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01029576

Keywords

Navigation