Skip to main content
Log in

A model for the complex permittivity of water at frequencies below 1 THz

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

Experimental permittivity data of liquid water, compiled from the open literature, were selectively applied to support a modeling strategy. Frequencies up to 1 THz and atmospheric temperatures are covered with an expression made up by two relaxation (Debye) terms. The double-Debye model reduces to one term when the high frequency limit is set at 100 GHz, and the model can be extended to 30 THz by adding two resonance (Lorentzian) terms. The scheme was carried out by employing nonlinear least-squares fitting routines to data we considered reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Manabe, H. J. Liebe, and G. A. Hufford,IEEE Conf. Dig. 87CH1490-1, 21–22, Orlando, FL, 1987; andIECE Tech. Rept. AP87-121, p. 1–6; Yonezawa, Japan, Feb. 1988.

    Google Scholar 

  2. H. J. Liebe, T. Manabe, and G. A. Hufford,IEEE Trans. Ant. Prop. AP-37(12), 1617–1623, 1989.

    Google Scholar 

  3. H. J. Liebe,Int. J. Infrared & Millimeter Waves 10(6), 631–650, 1989.

    Google Scholar 

  4. P. S. Ray,Appl. Opt. 11(8), 1836–1844, 1972.

    Google Scholar 

  5. D. Eisenberg and W. Kauzmann,The Structure and Properties of Water, Oxford Univ. Press, New York, 1969.

    Google Scholar 

  6. J. B. Hasted,Aqueous Dielectrics, Chapman and Hall, London, 1973.

    Google Scholar 

  7. U. Kaatze and V. Uhlendorf,Z. Phys. Chem. (NF) 126, 151–165, 1981.

    Google Scholar 

  8. U. Kaatze,Chem. Phys. L. 132(3), 291–293, 1986.

    Google Scholar 

  9. J. B. Hasted, S. K. Husain, F. A. Frescura, and J. R. Birch,Chem. Phys. L. 118(6), 622–625, 1985.

    Google Scholar 

  10. D. Bertolini, M. Cassettari, and G. Salvetti,J. Chem. Phys. 76(6), 3285–90, 1982.

    Google Scholar 

  11. L. Zanforlin,IEEE Trans. Microwave Theory Tech. MTT-31(5), 417–419, 1983.

    Google Scholar 

  12. H. Zaghloul and H. A. Buckmaster,J. Phys. D: Appl. Phys. 18, 2109–18, 1985.

    Google Scholar 

  13. J. M. Alison and R. J. Sheppard,Meas. Sci. Technology 1, 1093–98, 1990.

    Google Scholar 

  14. M. N. Afsar and J. B. Hasted,J. Opt. Soc. Am. 67(7), 902–904, 1977.

    Google Scholar 

  15. M. N. Afsar and J. B. Hasted,Infrared Phys. 18, 835–841, 1978.

    Google Scholar 

  16. O. A. Simpson, B. L. Bean, and S. Perkowitz,J. Opt. Soc. Am. 69(12), 1723–26, 1979.

    Google Scholar 

  17. M. D. Blue,J. Geophys. Res. 85(C2), 1101–06, 1980.

    Google Scholar 

  18. J. B. Hasted, S. K. Husain, F. A. Frescura, and J. R. Birch,Infrared Phys. 27(1), 11–15, 1987.

    Google Scholar 

  19. V. M. Zolotarev, B. A. Mikhailov, L. I. Alperovich, and S. L. Popov,Opt. Spectr. 27, 430–32, 1969.

    Google Scholar 

  20. A. N. Rusk, D. Williams, and M. R. Querry,J. Opt. Soc. Am. 61(7), 895–903, 1971.

    Google Scholar 

  21. J. K. Vij,Int. J. Infrared & Millimeter Waves 10(7), 847–867, 1989.

    Google Scholar 

  22. G. M. Hale and M. R. Querry,J. Opt. Soc. Am. 62(9), 1103–08, 1972.

    Google Scholar 

  23. R. J. Sheppard,J. Phys. E: Sci. Instrum. 14, 156–160, 1973.

    Google Scholar 

  24. P. R. Mason, J. B. Hasted, and L. Moore,Adv. Molec. Relax. Proces. 6, 217–232, 1974.

    Google Scholar 

  25. D. W. Marquardt,J. Soc. Indust. Appl. Math. 11(2), 431–441, 1963.

    Google Scholar 

  26. A. Stogryn,IEEE Trans. Microwave Theory Tech. MTT-19(8), 733–736, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

T. Manabe was with the Institute for Telecommunication Sciences, NTIA-DoC, on leave from the Radio Research Laboratory, Ministry of Posts and Telecommunications, Koganei, Tokyo 184. He is now with ATR Optical and Radio Communications Research Laboratories, Seika-cho, Soraku-gun, Kyoto 619-02, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liebe, H.J., Hufford, G.A. & Manabe, T. A model for the complex permittivity of water at frequencies below 1 THz. Int J Infrared Milli Waves 12, 659–675 (1991). https://doi.org/10.1007/BF01008897

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01008897

Keywords

Navigation