Skip to main content
Log in

The membrane of catecholamine storage vesicles of adrenal medulla catecholamine fluxes and ATPase activity

  • Published:
Naunyn-Schmiedebergs Archiv für Pharmakologie Aims and scope Submit manuscript

Summary

1. A method of preparing isolated membranes of the catecholamine storing vesicles of the adrenal medulla is described. The membrane protein amounts to 23% of the total vesicular protein and still contains 0.1% of the catecholamine. 2. At 31‡C in the presence of ATP the membrane preparation accumulates catecholamine; in the absence of ATP, however, catecholamine is released into the medium. At 0‡C the catecholamine content of the membrane preparation remains unchanged, whether ATP is present or not, although a low catecholamine turnover is observed. 3. From the kinetics of the catecholamine turnover in the absence or presence of ATP a low ATP-independent catecholamine influx can be distinguished from a considerably higher ATP-dependent influx of catecholamine. 4. The catecholamine influx as well as the ATPase activity of the membrane preparation decreases with time; in contrast, the catecholamine efflux remains constant and is higher in the presence of ATP than in its absence. 5. Catecholamine is to a great extent accumulated within a membrane-enclosed space into newly formed particles; only a minor amount of the catecholamines is actually bound within the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banks, P., Helle, K. B.: The release of protein from the stimulated adrenal medulla. Biochem. J.97, 40c (1965).

    Google Scholar 

  • Berneis, K. H., Pletscher, A., Da Prada, M.: Metal-dependent aggregation of biogenic amines: A hypothesis for their storage and release. Nature (Lond.)224, 281 (1969).

    Google Scholar 

  • Blaschko, H., Comline, K. S., Schneider, F. H., Silver, M., Smith, A. D.: Secretion of a chromaffine granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature (Lond.)215, 58 (1967a).

    Google Scholar 

  • —, Firemark, H., Smith, A. D., Winkler, H.: Lipids of the adrenal medulla. Lysolecithin, a characteristic constituent of chromaffin granules. Biochem. J.104, 545 (1967b).

    Google Scholar 

  • - Helle, K. B.: Interaction of soluble protein fractions from bovine adrenal medullary granules with adrenaline and adenosine triphosphate. J. Physiol. (Lond.)169, 120p (1963).

    Google Scholar 

  • Burger, A., Philippu, A., Schümann, H. J.: ATP-Spaltung und Aminaufnahme durch Milznervengranula. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path.262, 208 (1969).

    Google Scholar 

  • Diner, O.: L'expulsion des granules de la médullo-surrénale chez le Hamster. C. R. Acad. Sci. (Paris)265, 616 (1967).

    Google Scholar 

  • Douglas, W. W.: Stimulus-secretion coupling: The concept and clues from chromaffine and other cells. The first Gaddum memorial lecture. Brit. J. Pharmacol.34, 451 (1968).

    Google Scholar 

  • Euler, U. S. v., Lishajko, F.: Improved technique for the fluorimetric estimation of catecholamines. Acta physiol. scand.51, 348 (1961).

    Google Scholar 

  • ——: Effect of adenine nucleotides on catecholamine release and uptake in isolated nerve granules. Acta physiol. scand.59, 454 (1963).

    Google Scholar 

  • ——: Uptake of L- and D-isomers of catecholamines in adrenergic nerve granules. Acta physiol. scand.60, 217 (1964).

    Google Scholar 

  • Hasselbach, W., Makinose, M.: Die Calciumpumpe der „Erschlaffungsgrana“ des Muskels und ihre AbhÄngigkeit von der ATP-Spaltung. Biochem. Z.333, 518 (1961).

    Google Scholar 

  • —, Taugner, G.: The effect of a cross-bridging thiol reagent on the catecholamine fluxes of adrenal medulla vesicles. Biochem. J.119, 265 (1970).

    Google Scholar 

  • Helle, K. B., Serck-Hanssen, G.: Chromogranin: The soluble and membrane bound lipoprotein of the chromaffine granule. Pharmacol. Res. Commun.1, 25 (1969).

    Google Scholar 

  • Hillarp, N. å.: Adenosinephosphates and inorganic phosphate in the adrenaline and noradrenaline containing granules of the adrenal medulla. Acta physiol. scand.42, 321 (1958).

    Google Scholar 

  • Kirshner, N., Holloway, C., Kamin, D.: Permeability of catecholamine granules. Biochem. biophys. Acta (Amst.)112, 532 (1966).

    Google Scholar 

  • Makinose, M., Hasselbach, W.: Der Einflu\ von Oxalat auf den Calcium-Transport isolierter Vesikel des sarkoplastischen Reticulum. Biochem. Z.343, 360 (1965).

    Google Scholar 

  • Malamed, S., Poisner, A. M., Trifaro, J. M., Douglas, W. W.: The fate of chromaffine granule during catecholamine release from the adrenal medulla. III. Recovery of a purified fraction of electron-translucent structures. Biochem. Pharmacol.17, 241 (1968).

    Google Scholar 

  • Rockstein, M., Herron, P. W.: Colorimetric determination of inorganic phosphate in microgram quantities. Analyt. Chem.23, 1500 (1951).

    Google Scholar 

  • Schneider, F. H., Smith, A. D., Winkler, H.: Secretion from the adrenal medulla: biochemical evidence for exocytosis. Brit. J. Pharmacol.31, 94 (1967).

    Google Scholar 

  • Skou, J. Ch.: The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. biophys. Acta (Amst.)23, 394 (1957).

    Google Scholar 

  • Smith, A. D., Winkler, H.: Purification and properties of an acid protein from chromaffine granules of bovine adrenal medulla. Biochem. J.103, 483 (1967).

    Google Scholar 

  • Taugner, G., ATP als Katecholamin-Freisetzer in isotonischen Salzlösungen? Naunyn-Schmiedebergs Arch. Pharmak.264, 315 (1969).

    Google Scholar 

  • —: The effect of salts on catecholamine fluxes and adenosine triphosphatase activity from storage vesicles of the adrenal medulla. Biochem. J.123, 219 (1971).

    Google Scholar 

  • —, Hasselbach, W.: über den Mechanismus der Catecholamin-Speicherung in den „chromaffinen Granula“ des Nebennierenmarks. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path.255, 266 (1966a).

    Google Scholar 

  • - - Kinetic aspects of catecholamine storage. Biochem. J.102, 23p (1966b).

  • ——: Die Bedeutung der Sulhydryl-Gruppen für den Catecholamin-Transport der Vesikel des Nebennierenmarkes. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path.260, 58 (1968).

    Google Scholar 

  • Viveros, O. H., Arqueros, L., Kirshner, N.: Mechanism of secretion from the adrenal medulla. Retention of storage vesicle membranes following release of adrenaline. Molec. Pharmacol.5, 342 (1969).

    Google Scholar 

  • Weiner, N., Jardetzky, O.: A study of catecholamine nucleotide complexes by nuclear magnetic resonance spectroscopy. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path.248, 308 (1964).

    Google Scholar 

  • Winkler, H., Hörtnagl, H., Hörtnagl, H., Smith, A. D.: Membranes of the adrenal medulla. Behaviour of insoluble proteins of chromaffin granules on gel electrophoresis. Biochem. J.118, 303 (1970).

    Google Scholar 

  • —, Strieder, N., Ziegler, E.: über Lipide, insbesondere Lysolecithin, in den chromaffinen Granula verschiedener Species. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path.256, 407 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taujgner, G. The membrane of catecholamine storage vesicles of adrenal medulla catecholamine fluxes and ATPase activity. Naunyn-Schmiedebergs Arch. Pharmak. 270, 392–406 (1971). https://doi.org/10.1007/BF01002350

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01002350

Key-Words

Navigation