Skip to main content
Log in

Heat transfer and flow around a circular cylinder with tripping-wires

Wärmeübergang und Strömung um einen Kreiszylinder mit Stolperdrähten

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

An experimental study was conducted on the heat transfer under the condition of constant heat flux and the flow around a circular cylinder with tripping-wires, which were affixed at ± 65° from the forward stagnation point on the cylinder surface. The testing fluid was air and the Reynolds number Red, based on the cylinder diameter, ranged from 1.2 × 104 to 5.2×104. Especially investigated are the interactions between the heat transfer and the flow in the critical flow state, in relation to the static pressure distribution along the cylinder surface and the mean and turbulent fluctuating velocities in the wake. It is found that the heat transfer from the cylinder to the cross flow is in very close connection with the width of near wake.

Zusammenfassung

Der Wärmeübergang bei konstantem Wärmestrom und die Strömung um einen Kreiszylinder mit Stolperdrähten, die bei ± 65° vom vorderen Staupunkt angebracht werden, wurden in dieser Arbeit untersucht. Das strömende Medium war Luft bei Reynolds-Zahlen, definiert mit dem Zylinderdurchmesser, von 1.2×104 bis 5.2×104. Besonders wurde die Wechselwirkung zwischen Wärmeübergang und Strömung im kritischen Bereich untersucht in Bezug auf die statische Druckverteilung um den Zylinder und die mittlere Schwankungsgeschwindigkeit im Totwasser. Es ergibt sich, daß der Wärmeübergang sehr eng mit der Breite der abgelösten Strömung zusammenhängt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CD :

pressure drag coefficient=\(\mathop \smallint \limits_0^\prod \)Cp cos θ dθ

Cp :

static pressure coefficient=(P−P)/1/2 ρU 2

d:

cylinder diameter

f:

vortex shedding frequency

h:

heat transfer coefficient

I:

electric current

k:

roughness height

Nu:

Nusselt number

P:

static pressure

q:

heat flux per unit area and unit time

Red :

Reynolds number=Ud/ν

S:

area of heating surface

St:

Strouhal number=fd/U

T:

temperature

U:

time mean velocity

U :

upstream velocity

u′:

turbulent velocity fluctuation along mean flow direction

V:

electric voltage

W:

wake width defined as distance between points of U/U= 1.0

W*:

non-dimensional half wake width=W/2d

x:

horizontal distance from cylinder axis

y:

vertical distance normal to wake axis

ɛ:

tripping-wire diameter

θ:

circumferential angle from stagnation point

λ :

thermal conductivity of air

ν :

kinematic viscosity of air

ρ:

density of air

b:

back

m:

mean

w:

wall

∞:

main flow

References

  1. Achenbach, E.: Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re=5 × 106. J. Fluid Mech. 34 (1968) 625–639

    Google Scholar 

  2. Achenbach, E.: Total and local heat transfer from a smooth circular cylinder in cross-flow at high Reynolds number. Int. J. Heat Mass Transf. 18 (1975) 1387–1396

    Google Scholar 

  3. Achenbach, E.: Influence of surface roughness on the cross-flow around a circular cylinder. J. Fluid Mech. 46 (1971) 321–335

    Google Scholar 

  4. Achenbach, E.: The effect of surface roughness on the heat transfer from a circular cylinder to the cross-flow of air. Int. J. Heat Mass Transf. 20 (1977) 359–369

    Google Scholar 

  5. Richter, A.; Naudascher, E.: Fluctuating forces on a rigid circular cylinder in confined flow. J. Fluid Mech. 78 (1976) 561–576

    Google Scholar 

  6. Goldstein, S. (ed.): Modern Developments in Fluid Dynamics. Dover: (1965)

  7. Fage, A.; Warsap, J. H.: The effect of turbulence and surface roughness on the drag of a circular cylinder. Aero. Res. Counc. Lond. R & M. No. 1283 (1930)

  8. Aiba, S.; Yamazaki, Y.: An experimental investigation of heat transfer around a tube in a bank. J. Heat Transf. Trans. ASME 98C (1976) 503–508

    Google Scholar 

  9. Giedt, W.H.: Investigation of variation of point unit heat-transfer coefficient around a cylinder normal to an air stream. Trans. ASME 71 (1949) 375–381

    Google Scholar 

  10. Schmidt, E.; Wenner, K.: Wärmeabgabe über den Umfang eines angeblasenen geheizten Zylinders. Forsch. Geb. IngWes. 12 (1941) 65–73

    Google Scholar 

  11. Fujita, H.; Takahama, H.; Yamasita, R.: The forced convective heat transfer on a plate with a cylinder inserted in the boundary layer. Trans. JSME. 42 (1976) 2828–2836

    Google Scholar 

  12. Richardson, P.D.: Heat and mass transfer in turbulent separated flows. Chemical Engng. Sci. 18 (1963) 149–155

    Google Scholar 

  13. Apelt, C.J.; West, G.S.; Szewczyk, A.A.: The effects of wake splitter plates on the flow past a circular cylinder in the range 104 <Re<5x104. J. Fluid Mech. 61 (1973) 187–198

    Google Scholar 

  14. Szechenyi, E.: Supercritical Reynolds number simulation for two-dimensional flow over circular cylinders. J. Fluid Mech. 70 (1975) 529–542

    Google Scholar 

  15. Roshko, A.: On the wake and drag of bluff bodies. J. Aeron. Sci. 22 (1955) 124–132

    Google Scholar 

  16. Wieselsberger, C.: Neuere Feststellungen über die Gesetze des Flüssigkeits- und Luftwiderstands. Phys. Z. 22 (1921) 321–328

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aiba, S., Ota, T. & Tsuchida, H. Heat transfer and flow around a circular cylinder with tripping-wires. Wärme- und Stoffübertragung 12, 221–231 (1979). https://doi.org/10.1007/BF00997314

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00997314

Keywords

Navigation