Skip to main content
Log in

Preparation of affinity-purified, biotinylated tetanus toxin, and characterization and localization of cell surface binding sites on nerve growth factor-treated PC12 cells

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Biotinylated derivatives of tetanus toxin were prepared and isolated by chromatofocusing and ganglioside-affinity chromatography. Biotinylation was monitored by the appearance of a 210,00 dalton complex upon SDS-polyacrylamide gel electrophoresis in the presence of avidin, and by selective binding to an avidin-Sepharose gel. At molar biotin:toxin ratios from 1∶1 to 20∶1 only biotinylated derivatives with low toxicity were obtained; these derivatives, however, retained 60–80% of their specific binding affinity for brain synaptosomes. A biotinylated tetanus toxin derivative purified by ganglioside-affinity chromatography was used to identify and localize tetanus toxin binding sites on PC12 cells. Electron microscopic analysis with streptavidin-gold revealed very low levels of tetanus toxin binding sites on the surface of untreated cells, and the appearance of such binding sites during the second week of nerve growth factor-induced differentiation. Examination of micrographs of the differentiated cells indicated that the tetanus toxin binding sites sites are concentrated on the neurites, with relatively few appearing on the cell bodies. Cognate studies using125I-labeled, affinity-purified tetanus toxin revealed an increase in PC12 binding capacity from about 0.07 nmol/mg protein in untreated cells to 0.8 nmoles/mg protein in cells treated for 14 days with nerve growth factor. Cells treated in suspension for 2–3 weeks with nerve growth factor do not express tetanus toxin binding sites; upon plating, these cells required one week for the appearance of binding sites, although neurites grew much more rapidly from these “primed” cells. The high binding capacity of these tetanus toxin sites, as well as their sensitivity to neuraminidase, is indicative of a polysialoganglioside structure. The advantages of biotinylated tetanus toxin derivatives are discussed and the significance of nerve growth factor-differentiated PC12 cells grown as monolayers as a model for the study of the development, localization, and function of neuraminidase-sensitive tetanus toxin binding sites is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PBS:

phosphate-buffered saline

STS:

sucrose-Tris-serum solution

NGF:

nerve growth factor

C:

collagen

PL:

polylysine

BBG:

bovine brain ganglioside mixture

GM1 :

gafactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosyl ceramide

GD1a :

[N-acetylneuraminyl]-galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosyl ceramide

GT1a :

[N-aceylneuraminyl]-galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosyl ceramide

GD1b :

galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl-N-acetylneuraminyl]-galactosylglucosyl ceramide

GT1b :

[N-acetylneuraminyl]-galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl-N-acetylneuraminyl] galactosylglucosyl ceramide

NANA:

N-acetylneuraminic acid

References

  1. Wellhoner, H. H. 1982. Tetanus neurotoxin. Rev. Physiol. Biochem. Pharmacol. 93:1–68.

    PubMed  Google Scholar 

  2. Habermann, E. 1978. Tetanus. Pages 481–547,in Vinken, P. J., and Bruyn, G. W. (eds.), Handbook of Clinical Neurology, North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  3. Yavin, E., Yavin, Z., Habig, W. H., Hardegree, M. C., and Kohn, L. D. 1981. Tetanus toxin association with developing neuronal cell cultures: Kinetic parameters and evidence for ganglioside mediated internalization. J. Biol. Chem. 256:7014–7022.

    PubMed  Google Scholar 

  4. Yavin, Z., Yavin, E., and Kohn, L. D. 1982. Sequestration of tetanus toxin in developing neuronal cell cultures. J. Neurosci. Res. 7:267–278.

    PubMed  Google Scholar 

  5. Yavin, E., Yavin, Z., and Kohn, L. D. 1983. Temperature mediated interaction of tetanus toxin with cerebral neuron cultures: characterization of a neuraminidase-insensitive toxin receptor complex. J. Neurochem. 40:1212–1219.

    PubMed  Google Scholar 

  6. Lazarovici, P., and Yavin, E. 1986. Affinity purified tetanus neurotoxin interaction with synaptic membranes: Properties of protease-sensitive receptor component. Biochemistry 25:7047–7054.

    PubMed  Google Scholar 

  7. Yavin, E. 1984. Gangliosides mediate association of tetanus toxin with neural cells in culture. Arch. Biochem. Biophys. 230:129–137.

    PubMed  Google Scholar 

  8. Yavin, E., and Habig, W. H. 1984. Binding of tetanus toxin to somatic neural hybrid cells with varying ganglioside composition. J. Neurochem. 42:1313–1320.

    PubMed  Google Scholar 

  9. Lazarovici, P., and Yavin, E. 1985. Tetanus toxin interaction with human erythrocytes. I. Properties of polysialogangliosides association with the cell surface. Biochim. Biophys. Acta 812:523–531.

    PubMed  Google Scholar 

  10. Lazarovici, P., and Yavin, E. 1985. Tetanus toxin interaction with human erythrocytes. II. Kinetic properties of toxin association and evidence for a ganglioside-toxin macromolecular complex formation. Biochim. Biophys. Acta 812:532–542.

    PubMed  Google Scholar 

  11. Mirsky, R., Wendon, L. M. B., Black, P., Stolkin, C., and Bray, D. 1978. Tetanus toxin: a cell surface marker for neurones in culture. Brain Res. 148:251–259.

    PubMed  Google Scholar 

  12. Lazarovici, P., Tayot, J. L., and Yavin, E. 1984. Affinity chromatography purification and characterization of two iodinated tetanotoxin fractions exhibiting different binding properties. Toxicon 22:401–413.

    PubMed  Google Scholar 

  13. Bocchini, V., and Angeletti, P. U. 1969. The nerve growth factor: Purification as a 30,000 molecular weight protein. Proc. Natl. Acad. Sci. USA 64:787–794.

    PubMed  Google Scholar 

  14. Bizzini, B. 1977. Tetanus toxin structure as a basis for elucidating its immunological and neuropharmacological activities. Pages 175–218,in Cuatrecasas, P. (ed.), Receptors and Recognition. The Specificity and Action of Animal, Bacterial and Plant Toxins, Vol. 1, Chapman and Hall, London.

    Google Scholar 

  15. Bayer, E. A., and Wilchek, M. 1980. The use of avidin-biotin complex as a tool in molecular biology. Pages 1–45,in Glick, D. (ed.), Methods of Biochemical Analysis, Vol. 26, John Wiley & Sons, New York.

    Google Scholar 

  16. Bock, K., Breimer, M. E., Brignole, A., Hansson, G. C., Karlsson, K. A., Larson, G., Leffler, H., Samuelsson, B. E., Stromberg, N., Eden, C. S., and Thurin, J. 1985. Specificity of binding of a strain of uropathogenic Escherichia coli to Gal 1->4 Galcontaining glycosphingolipids. J. Biol. Chem. 260:8545–8551.

    PubMed  Google Scholar 

  17. Laemmli, V. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685.

    Google Scholar 

  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  19. Holmgren, J., Elwing, H., Fredman, P., and Svennerholm, L. 1980. Polystyrene-adsorbed gangliosides for the investigation of the structure of tetanus toxin receptor. Eur. J. Biochem. 106:371–379.

    PubMed  Google Scholar 

  20. Parton, R. G., Ockleford, C. D., and Critchley, D. R. 1987. A study of the mechanism of internalization of tetanus toxin by primary mouse spinal cord cultures. J. Neurochem. 49:1057–1068.

    PubMed  Google Scholar 

  21. Tischler, A. S., Greene, L. A., Kwan, P. W., and Slayton, V. W. 1983. Ultrastructural effects of nerve growth factor on PC12 pheochromocytoma cells in spinner cultures. Cell Tiss. Res. 228:641–648.

    Google Scholar 

  22. Habermann, E. 1973. Discrimination between binding to CNS, toxicity and immunoreactivity of derivatives of tetanus toxin. Med. Microbiol. Immunol. 159:89–97.

    PubMed  Google Scholar 

  23. Lazarovici, P., and Yavin, E. 1985. Affinity purified tetanus toxin and gangliosides form aggregates in aqueous solutions and in biological membranes. Pages 29–48,in Nistico, G., Mastroeni, P., and Pitzurra, M. (eds.), Seventh International Conference on Tetanus, Gangemi Publishing Co., Rome.

    Google Scholar 

  24. Lazarovici, P., Yanai, P., and Yavin, E. 1987. Molecular interactions between micellar polysialogangliosides and affinity purified tetanotoxins in aqueous solution. J. Biol. Chem. 262:2645–2651.

    PubMed  Google Scholar 

  25. Erdmann, G., Wiegand, H., and Wellhoner, H. H. 1975. Intraaxonal and extraaxonal transport of125I-tetanus toxin in early local tetanus. Naunyn-Schmiedeberg's Arch. Pharmacol. 290:357–373.

    Google Scholar 

  26. Habig, W. H., Bigalke, H., Bergey, G. K., Neale, E. A., Hardegree, M. C., and Nelson, P. G. 1986. Tetanus toxin in dissociated spinal cord cultures: long-term characterization of form and action. J. Neurochem. 47:930–937.

    PubMed  Google Scholar 

  27. Critchley, D. R., Nelson, P. G., Habig, W. H., and Fishman, P. H. 1985. Fate of tetanus toxin bound to the surface of primary neurons in culture: evidence for rapid internalization. J. Cell Biol. 100:1499–1507.

    PubMed  Google Scholar 

  28. Montesano, R., Roth, J., Robert, A., and Orci, L. 1982. Noncoated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins. Nature 296:651–653.

    PubMed  Google Scholar 

  29. Schwab, M. E., and Thoenen, H. 1978. Selective binding, uptake and retrograde transport of tetanus toxin by nerve terminals in the rat iris. J. Cell Biol. 77:1–13.

    PubMed  Google Scholar 

  30. Guroff, G. 1985. PC12 cells as a model of neuronal differentiation. Pages 245–271,in Bottenstein, J. E., and Sato, G. (eds.), Cell Culture in the Neurosciences, Publishing Co., New York.

    Google Scholar 

  31. Kenimer, J. G., Habig, W. H., and Hardegree, M. C. 1983. Monoclonal antibodies as probes of tetanotoxin structure and function. Infec. Immunity 42:942–948.

    Google Scholar 

  32. Rudy, R., Kirshenbaum, B., and Greene, L. A. 1982. Nerve growth factor-induced increase in saxitoxin binding to rat PC12 cells. J. Neurosci. 2:1405–1411.

    PubMed  Google Scholar 

  33. Ariga, T., Macala, L. J., Saito, M., Margolis, R. M., Greene, L. A., Margolis, R. U., and Yu, R. K. 1988. Lipid composition of PC12 pheochromocytoma cells: Characterization of globoside as a major neutral glycolipid. Biochemistry 27:52–58.

    PubMed  Google Scholar 

  34. Walton, K. M., Sandberg, K., Rogers, T. B., and Schnaar, R. L. 1988. Complex ganglioside expression and tetanus toxin binding by PC12 pheochromocytoma cells. J. Biol. Chem. 263:2055–2063.

    PubMed  Google Scholar 

  35. Young, K. K., Moskal, J. R., Chien, J. L., Gardner, D. A., and Basau, S. 1984. Biosynthesis of globoside and Forssman-related glycosphingolipid in mouse adrenal Y-1 tumor cells. Biochem. Biophys. Res. Commun. 59:252–260.

    Google Scholar 

  36. Moskal, J. R., Gardner, D. A., and Basau, S. 1984. Changes in glycolipid glycosyltransferases and glutamate decarboxylase and their relationship to differentiation in neuroblastoma cells. Biochem. Biophys. Res. Commun. 61:757–758.

    Google Scholar 

  37. Whatley, R., Ng, S. K. C., Rogers, J., McMurray, W. C., and Sanwal, B. D. 1976. Developmental changes in gangliosides during myogenesis of a rat myoblast cell line and its drug resistant variants. Biochem. Biophys. Res. Commun. 70:180–185.

    PubMed  Google Scholar 

  38. Sandberg, K., and Rogers, T. B. 1986. Tetanus toxin inhibits the evoked release of acetylcholine in PC12 cells differentiated by nerve growth factor. Society for Neuroscience Abstracts 12:228.

    Google Scholar 

  39. Figliomeni, B., and Grasso, A. 1985. Tetanus toxin affects the K+-stimulated release of catecholamines from nerve growth factor-treated PC12 cells. Biochem. Biophys. Res. Commun. 128:249–256.

    PubMed  Google Scholar 

  40. Hakomori, S. I. 1981. Glycosphiagolipids in cellular interaction, differentiation and oncogenesis. Annu. Rev. Biochem. 50:733–764.

    PubMed  Google Scholar 

  41. Yavin, E., Lazarovici, P., and Nathan, A. 1987. Molecular interactions of ganglioside receptors with tetanus toxin on solid supports, aqueous solutions, and natural membranes. Pages 135–147,in Wirtz, K. W. A. (ed.), Membrane Receptors, Dynamics, and Energetics, Plenum Publishing Co., New York.

    Google Scholar 

  42. Watanabe, K., Hakomori, S., Powell, M. E., and Yokota, M. 1980. The amphipathic membrane proteins associated with gangliosides: the Paul-Bunnel antigen is one of the gangliophilic proteins. Biochem. Biophys. Res. Commun. 92:638–646.

    PubMed  Google Scholar 

  43. Wood, G. S., and Warnke, R. 1981. Suppression of endogenous avidin-binding activity in tissues and its relevance to biotin-avidin detection systems. J. Histochem. Cytochem. 29:1196–1204.

    PubMed  Google Scholar 

  44. Bonnard, C., Papermaster, D. S., and Kraehenbuhl, J. P. 1984. The streptavidin biotin bridge technique: Application in light and electron microscopic immunocytochemistry. Pages 95–111,in Polak, J. M., and Varndell, I. M. (eds.), Immunolabelling for Electron Microscopy, Elsevier, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, K., Guroff, G., Yavin, E. et al. Preparation of affinity-purified, biotinylated tetanus toxin, and characterization and localization of cell surface binding sites on nerve growth factor-treated PC12 cells. Neurochem Res 15, 373–383 (1990). https://doi.org/10.1007/BF00969922

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969922

Key Words

Navigation